Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T10:14:54.018Z Has data issue: false hasContentIssue false

20 - PET/SPECT

from Part II - Neuroimaging in neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Maja Trošt
Affiliation:
Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA
Vijay Dhawan
Affiliation:
Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA
Andrew Feigin
Affiliation:
Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA
David Eidelberg
Affiliation:
Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA
Get access

Summary

Introduction

Neurodegenerative diseases, particularly those affecting the basal ganglia and related pathways, are often associated with abnormal activity of nigrostriatal dopaminergic projections. The integrity of this system can be assessed by neuroimaging methods utilizing radioligands that bind to pre or postsynaptic components. By contrast, the functional organization of the basal ganglia and its projections can be assessed by imaging regional cerebral blood flow and metabolism as measures of neural activity. Single photon and positron emission tomographic imaging (SPECT and PET) have been applied in studies of network activity. While these studies have relied mainly upon PET imaging in the resting state and during brain activation, SPECT and magnetic resonance techniques have also been used for this purpose. In this chapter, we will review the development of PET and SPECT techniques as markers of neurodegenerative processes specifically to assess rates of disease progression and the effects of novel therapeutic interventions.

Presynaptic dopaminergic function

Dopamine transporter imaging

The dopamine transporter (DAT) enables the release and reabsorption of dopamine in the nigrostriatal intersynaptic cleft. Different radiotracers, mostly cocaine analogues, have been developed to quantify striatal DAT binding as an objective marker of the integrity of presynaptic nigrostriatal dopamine terminals (Wilson et al., 1996; Ma et al., 2002) (Fig. 20.1). DAT imaging can be implemented with a variety of radiotracers using either SPECT or PET techniques. The major SPECT compounds in current use include [123I]-2β-carbomethyl-3β-(4-iodophenyl) tropane (βCIT) and its fluoropropyl derivative [123I] FPCIT, [123I]-Altropane, [123I]-(N)-(3-io dopropen-2-yl)-2β-carbomethoxy-3β-(4-chlorophenyl) tropane (IPT), and [99mTc]-2β-((N, N′-bis(2-mercaptoethyl)ethylene diamino)methyl), 3β-(4-chlorophenyl)tropane) (TRODAT).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 290 - 300
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlskog, J. E., Uitti, R. J., O'Connor, M. K.et al. (1999). The effect of dopamine agonist therapy on dopamine transporter imaging in Parkinson's disease. Mov. Disord., 14(6), 940–63.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Alexander, G. E., Crutcher, M. D. & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Prog. Brain Res., 85, 119–46CrossRefGoogle ScholarPubMed
Antonini, A., Leenders, K. L., Spiegel, R.et al. (1996). Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain, 119(Pt 6), 2085–95CrossRefGoogle ScholarPubMed
Antonini, A., Leenders, K. L., Vontobel, P.et al. (1997). Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease. Brain, 120(12), 2187–95CrossRefGoogle ScholarPubMed
Antonini, A., Kazumata, K., Feigin, A.et al. (1998). Differential diagnosis of parkinsonism with [18F]fluorodeoxyglucose and PET. Mov. Disord., 13(2), 268–74CrossRefGoogle Scholar
Antonini, A., Moresco, R. M., Gobbo, C.et al. (2001). The status of dopamine nerve terminals in Parkinson's disease and essential tremor: a PET study with the tracer [11-C]FE-CIT. Neurol. Sci., 22(1), 47–8CrossRefGoogle ScholarPubMed
Arahata, Y., Kato, T., Tadokoro, M. & Sobue, G. (1997). [18F-fluorodeoxyglucose positron emission tomography in Parkinson's disease]. Nippon Rinsho, 55(1), 222–6Google Scholar
Arahata, Y., Hirayama, M., Ieda, T.et al. (1999). Parieto-occipital glucose hypometabolism in Parkinson's disease with autonomic failure. J. Neurol. Sci., 163(2), 119–26CrossRefGoogle ScholarPubMed
Aylward, E. H., Codori, A. M., Rosenblatt, A.et al. (2000). Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington's disease. Mov. Disord., 15(3), 552–603.0.CO;2-P>CrossRefGoogle ScholarPubMed
Barthel, H., Sorger, D., Kuhn, H. J., Wagner, A., Kluge, R. & Hermann, W. (2001). Differential alteration of the nigrostriatal dopaminergic system in Wilson's disease investigated with [123I]ss-CIT and high-resolution SPET. Eur. J. Nucl. Med., 28(11), 1656–63CrossRefGoogle Scholar
Berding, G., Odin, P., Brooks, D. J.et al. (2001). Resting regional cerebral glucose metabolism in advanced Parkinson's disease studied in the off and on conditions with [(18)F]FDG-PET. Mov. Disord., 16(6), 1014–22CrossRefGoogle Scholar
Booij, J., Speelman, J. D., Horstink, M. W. & Wolters, E. C. (2001). The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur. J. Nucl. Med., 28(3), 266–72CrossRefGoogle Scholar
Brooks, D. J., Ibanez, V., Sawle, G. V.et al. (1990). Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy [see comments]. Ann. Neurol., 28(4), 547–55CrossRefGoogle Scholar
Carbon, M. & Eidelberg, D. (2002). Modulation of regional brain function by deep brain stimulation: studies with positron emission tomography. Curr. Opin. Neurol., 15(4), 451–5CrossRefGoogle ScholarPubMed
Dhawan, V. & Eidelberg, D. (2001). SPECT imaging in Parkinson's disease. Adv. Neurol., 86, 205–13Google ScholarPubMed
Dhawan, V., Ishikawa, T., Patlak, C.et al. (1996). Combined FDOPA and 3OMFD PET studies in Parkinson's disease. J. Nucl. Med., 37(2), 209–16Google ScholarPubMed
Dhawan, V., Ma, Y., Pillai, V., Spetsieres, P., Chaly, T. & Eidelberg, D. (2002). Comparative analysis of striatal FDOPA uptake in Parkinson's disease: ratio method versus graphical approach. J. Nucl. Med., in pressGoogle ScholarPubMed
During, M. J., Kaplitt, M. G., Stern, M. B. & Eidelberg, D. (2001). Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum. Gene Ther., 12(12), 1589–91Google ScholarPubMed
Eidelberg, D., Moeller, J. R., Dhawan, V.et al. (1990). The metabolic anatomy of Parkinson's disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov. Disord., 5(3), 203–13CrossRefGoogle Scholar
Eidelberg, D., Takikawa, S., Dhawan, V.et al. (1993). Striatal 18F-dopa uptake: absence of an aging effect. J. Cereb. Blood Flow. Metab., 13(5), 881–8CrossRefGoogle ScholarPubMed
Eidelberg, D., Moeller, J. R., Dhawan, V.et al. (1994). The metabolic topography of parkinsonism. J. Cereb. Blood Flow. Metab., 14(5), 783–801CrossRefGoogle ScholarPubMed
Eidelberg, D., Moeller, J. R., Ishikawa, T.et al. (1995a). Early differential diagnosis of Parkinson's disease with 18F-fluorodeoxyglucose and positron emission tomography. Neurology, 45(11), 1995–2004CrossRefGoogle Scholar
Eidelberg, D., Moeller, J. R., Ishikawa, T.et al. (1995b). Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET. J. Nucl. Med., 36(3), 378–83Google Scholar
Eidelberg, D., Moeller, J. R., Ishikawa, T.et al. (1996). Regional metabolic correlates of surgical outcome following unilateral pallidotomy for Parkinson's disease. Ann. Neurol., 39(4), 450–9CrossRefGoogle ScholarPubMed
Eidelberg, D., Moeller, J. R., Kazumata, K.et al. (1997). Metabolic correlates of pallidal neuronal activity in Parkinson's disease. Brain, 120(Pt 8), 1315–24CrossRefGoogle ScholarPubMed
Eidelberg, D., Edwards, C., Mentis, M., Dhawan, V. & Moeller, J. R. (2000). Movement disorders: Parkinson's disease. In Brain Mapping: The Disorders, ed. J. C., Mazziotta, A. W., Toga & R. S. J., Frackowiak, pp. 241–61. San Diego: Academic PressCrossRef
Feigin, A., Fukuda, M., Dhawan, V.et al. (2001a). Metabolic correlates of levodopa response in Parkinson's disease. Neurology, 57, 2083–8CrossRefGoogle Scholar
Feigin, A., Fukuda, M., Zgaljardic, D.et al. (2001b). Metabolic brain networks in presymptomatic Huntington's disease. Mov. Disord., 16(5), 985–6Google Scholar
Feigin, A., Leenders, K. L., Moeller, J. R.et al. (2001c). Metabolic network abnormalities in early Huntington's disease: an [(18)F]FDG PET study. J. Nucl. Med., 42(11), 1591–5Google Scholar
Feigin, A., Antonini, A., Fukuda, M.et al. (2002). Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism. Mov. Disord., 17(6), 1265–70CrossRefGoogle ScholarPubMed
Feigin, A., Ma, Y., Zgaljardic, D., Carbon, M., Dhawan, V. & Eidelberg, D. (2003). PET measures of longitudinal progression in presymptomatic Huntington's disease. 55th Annual Meeting of the American Academy of Neurology, Honolulu, Hawaii: Lippincott, Williams, and Wilkins
Frey, K., Koeppe, R., Kilbourn, M.et al. (1996). Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging. Ann. Neurol., 40(6), 873–4CrossRefGoogle ScholarPubMed
Frey, K. A., Koeppe, R. A. & Kilbourn, M. R. (2001). Imaging the vesicular monoamine transporter. Adv. Neurol., 86, 237–47Google ScholarPubMed
Fukuda, M., Mentis, M. J., Ma, Y.et al. (2001). Networks mediating the clinical effects of pallidal brain stimulation for Parkinson's disease: A PET study of resting-state glucose metabolism. Brain, 124(8), 1601–9CrossRefGoogle ScholarPubMed
Gerschlager, W., Bencsits, G., Pirker, W.et al. (2002). [123I]beta-CIT SPECT distinguishes vascular parkinsonism from Parkinson's disease. Mov. Disord., 17(3), 518–23CrossRefGoogle ScholarPubMed
Gjedde, A., Reith, J., Dyve, S.et al. (1991). Dopa decarboxylase activity of the living human brain. Proc. Natl Acad. Sci., USA, 88(7), 2721–5CrossRefGoogle ScholarPubMed
Guttman, M., Stewart, D., Hussey, D., Wilson, A., Houle, S. & Kish, S. (2001). Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD. Neurology, 56(11), 1559–64CrossRefGoogle ScholarPubMed
Hayden, M. R., Martin, W. R., Stoessl, A. J.et al. (1986). Positron emission tomography in the early diagnosis of Huntington's disease. Neurology, 36(7), 888–94CrossRefGoogle ScholarPubMed
Hayden, M. R., Hewitt, J., Stoessl, A. J., Clark, C., Ammann, W. & Martin, W. R. (1987). The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington's disease. Neurology, 37(9), 1441–7CrossRefGoogle ScholarPubMed
Hierholzer, J., Cordes, M., Venz, S.et al. (1998). Loss of dopamine-D2 receptor binding sites in Parkinsonian plus syndromes. J. Nucl. Med., 39(6), 954–60Google ScholarPubMed
Hilker, R., Klein, C., Ghaemi, M.et al. (2001). Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann. Neurol., 49(3), 367–76CrossRefGoogle ScholarPubMed
Hilker, R., Klein, C., Hedrich, K . et al. (2002). The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans. Neurosci. Lett., 323(1), 50–4CrossRefGoogle Scholar
Hwang, W. J., Yao, W. J., Wey, S. P., Shen, L. H. & Ting, G. (2002). Downregulation of striatal dopamine D2 receptors in advanced Parkinson's disease contributes to the development of motor fluctuation. Eur. Neurol., 47(2), 113–17CrossRefGoogle ScholarPubMed
Innis, R. B., Marek, K. L., Sheff, K.et al. (1999). Effect of treatment with L-dopa/carbidopa or L-selegiline on striatal dopamine transporter SPECT imaging with [123I]beta-CIT. Mov. Disord., 14(3), 436–423.0.CO;2-J>CrossRefGoogle ScholarPubMed
Ishikawa, T., Dhawan, V., Chaly, T.et al. (1996a). Clinical significance of striatal DOPA decarboxylase activity in Parkinson's disease. J. Nucl. Med., 37(2), 216–22Google Scholar
Ishikawa, T., Dhawan, V., Kazumata, K.et al. (1996b). Comparative nigrostriatal dopaminergic imaging with iodine-123-beta CIT-FP/SPECT and fluorine-18-FDOPA/PET. J. Nucl. Med., 37(11), 1760–5Google Scholar
Jeon, B. S., Jeong, J. M., Park, S. S.et al. (1998). Dopamine transporter density measured by [123I]beta-CIT single-photon emission computed tomography is normal in dopa-responsive dystonia. Ann. Neurol., 43(6), 792–800CrossRefGoogle Scholar
Kaasinen, V., Nurmi, E., Bruck, A.et al. (2001). Increased frontal [(18)F]fluorodopa uptake in early Parkinson's disease: sex differences in the prefrontal cortex. Brain, 124(Pt 6), 1125–30CrossRefGoogle ScholarPubMed
Kaasinen, V., Ruottinen, H. M., Nagren, K., Lehikoinen, P., Oikonen, V. & Rinne, J. O. (2000). Upregulation of putaminal dopamine D2 receptors in early Parkinson's disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone. J. Nucl. Med., 41(1), 65–70Google Scholar
Kazumata, K., Dhawan, V., Chaly, T.et al. (1998). Dopamine transporter imaging with fluorine-18-FPCIT and PET. J. Nucl. Med., 39(9), 1521–30Google ScholarPubMed
Kim, Y. J., Ichise, M., Ballinger, J. R.et al. (2002). Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov. Disord., 17(2), 303–12CrossRefGoogle ScholarPubMed
Kish, S. J., Zhong, X. H., Hornykiewicz, O. & Haycock, J. W. (1995). Striatal 3,4-dihydroxyphenylalanine decarboxylase in aging: disparity between postmortem and positron emission tomography studies?Ann. Neurol., 38(2), 260–4CrossRefGoogle ScholarPubMed
Kuhl, D. E., Phelps, M. E., Markham, C. H., Metter, E. J., Riege, W. H. & Winter, J. (1982). Cerebral metabolism and atrophy in Huntington's disease determined by 18FDG and computed tomographic scan. Ann. Neurol., 12(5), 425–34CrossRefGoogle ScholarPubMed
Kuwert, T., Lange, H. W., Langen, K. J., Herzog, H., Aulich, A. & Feinendegen, L. E. (1990). Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain, 113(Pt 5), 1405–23CrossRefGoogle ScholarPubMed
Kuwert, T., Ganslandt, T., Jansen, P.et al. (1992). Influence of size of regions of interest on PET evaluation of caudate glucose consumption. J. Comput. Assist. Tomogr., 16(5), 789–94CrossRefGoogle ScholarPubMed
Laureys, S., Salmon, E., Garraux, G.et al. (1999). Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J. Neurol., 246(12), 1151–8CrossRefGoogle ScholarPubMed
Lozza, C., Marie, R. M. & Baron, J. C. (2002). The metabolic substrates of bradykinesia and tremor in uncomplicated Parkinson's disease. Neuroimage, 17(2), 688–99CrossRefGoogle ScholarPubMed
Lozza, C., Marie, R.-M., Mentis, M., Eidelberg, D. & Baron, J.-C. (2001). Clues for metabolic topography of executive dysfunction in Parkinson's disease. Parkinsonism Rel. Disord., 7, S30Google Scholar
Ma, Y., Dhawan, V., Mentis, M., Chaly, T., Spetsieris, P. G. & Eidelberg, D. (2002). Parametric mapping of [18F]FPCIT binding in early stage Parkinson's disease: a PET study. Synapse, 45(2), 125–33CrossRefGoogle Scholar
Ma, Y., Feigin, A., Dhawan, V.et al. (2002). Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol., 52(5), 628–34CrossRefGoogle ScholarPubMed
Maraganore, D. M., O'Connor, M. K., Bower, J. H.et al. (1999). Detection of preclinical Parkinson disease in at-risk family members with use of [123I]beta-CIT and SPECT: an exploratory study. Mayo Clin. Proc., 74(7), 681–5CrossRefGoogle Scholar
Marek, K., Innis, R., Dyck, C.et al. (2001). [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson's disease progression. Neurology, 57(11), 2089–94CrossRefGoogle ScholarPubMed
Mazziotta, J. C., Phelps, M. E., Pahl, J. J.et al. (1987). Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington's disease. N. Engl. J. Med., 316(7), 357–62CrossRefGoogle ScholarPubMed
Mentis, M. J., McIntosh, A. R., Feigin, A.et al. (2002). Relationships between the metabolic patterns that correlated with mnemonic, visuospatial, and mood symptoms in Parkinson's disease. Am. J. Psychiatr., 159(5), in pressCrossRefGoogle ScholarPubMed
Moeller, J. R. & Eidelberg, D. (1997). Divergent expression of regional metabolic topographies in Parkinson's disease and normal ageing. Brain, 120(Pt 12), 2197–206CrossRefGoogle ScholarPubMed
Moeller, J. R., Ishikawa, T., Dhawan, V.et al. (1996). The metabolic topography of normal aging. J. Cereb. Blood Flow. Metab., 16(3), 385–98CrossRefGoogle ScholarPubMed
Morrish, P. K., Sawle, G. V. & Brooks, D. J. (1996). An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's Disease. Brain, 119, 585–91CrossRefGoogle ScholarPubMed
Nakamura, T., Ghilardi, M. F., Mentis, M.et al. (2001). Functional networks in motor sequence learning: abnormal topographies in Parkinson's disease. Hum. Brain Mapp., 12(1), 42–603.0.CO;2-D>CrossRefGoogle ScholarPubMed
Nurmi, E., Ruottinen, H. M., Bergman, J.et al. (2001). Rate of progression in Parkinson's disease: a 6-[18F]fluoro-L-dopa PET study. Mov. Disord., 16(4), 608–15CrossRefGoogle ScholarPubMed
Pate, B. D., Kawamata, T., Yamada, T.et al. (1993). Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Ann. Neurol., 34(3), 331–8CrossRefGoogle ScholarPubMed
Piccini, P., Brooks, D., Bjorklund, A.et al. (1999). Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat. Neurosci., 2(12), 1137–40CrossRefGoogle Scholar
Pirker, W., Djamshidian, S., Asenbaum, S.et al. (2002). Progression of dopaminergic degeneration in Parkinson's disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov. Disord., 17(1), 45–53CrossRefGoogle ScholarPubMed
Prunier, C., Tranquart, F., Cottier, J. P.et al. (2001). Quantitative analysis of striatal dopamine D2 receptors with 123 I-iodolisuride SPECT in degenerative extrapyramidal diseases. Nucl. Med. Commun., 22(11), 1207–14CrossRefGoogle ScholarPubMed
Rakshi, J. S., Uema, T., Ito, K.et al. (1999). Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [(18)F]dopa-PET study. Brain, 122 (Pt 9), 1637–50CrossRefGoogle Scholar
Ribeiro, M. J., Vidailhet, M. & Remy, P. (2002). 18F-dopa vs dopamine transporter ligands in positron emission computed tomographic scans for Parkinson disease. Arch. Neurol., 59(12), 1973–4CrossRefGoogle Scholar
Rosas, H. D., Goodman, J., Chen, Y. I.et al. (2001). Striatal volume loss in H0D as measured by MRI and the influence of CAG repeat. Neurology, 57(6), 1025–8CrossRefGoogle Scholar
Ruottinen, H. M., Partinen, M., Hublin, C.et al. (2000). An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology, 54(2), 502–4CrossRefGoogle ScholarPubMed
Sawle, G. V., Colebatch, J. G., Shah, A., Brooks, D. J., Marsden, C. D. & Frackowiak, R. S. (1990). Striatal function in normal aging: implications for Parkinson's disease. Ann. Neurol., 28(6), 799–804CrossRefGoogle ScholarPubMed
Seibyl, J. P., Marek, K., Sheff, K.et al. (1997). Test/retest reproducibility of iodine-123-betaCIT SPECT brain measurement of dopamine transporters in Parkinson's patients. J. Nucl. Med., 38(9), 1453–9Google ScholarPubMed
Snow, B., Tooyama, I., McGeer, E.et al. (1993). Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann. Neurol., 34(3), 324–30CrossRefGoogle ScholarPubMed
Su, P., Ma, Y., Fukuda, M.et al. (2001). Metabolic changes following subthalamotomy for advanced Parkinson's disease. Ann. Neurol., in pressCrossRefGoogle ScholarPubMed
Tissingh, G., Bergmans, P., Booij, J.et al. (1997). [123I]beta-CIT single-photon emission tomography in Parkinson's disease reveals a smaller decline in dopamine transporters with age than in controls. Eur. J. Nucl. Med., 24(9), 1171–4Google ScholarPubMed
Trenkwalder, C., Walters, A. S., Hening, W. A.et al. (1999). Positron emission tomographic studies in restless legs syndrome. Mov. Disord., 14(1), 141–53.0.CO;2-B>CrossRefGoogle ScholarPubMed
Trošt, M., Feigin, A. S., Ma, Y., Dhawan, V. & Eidelberg, D. (2002). Increasing activity of abnormal metabolic brain networks with the progression of Parkinson's disease. Neurology, 58(7), A202Google Scholar
Turjanski, N., Weeks, R., Dolan, R., Harding, A. E. & Brooks, D. J. (1995). Striatal D1 and D2 receptor binding in patients with Huntington's disease and other choreas. A PET study. Brain, 118(Pt 3), 689–96CrossRefGoogle ScholarPubMed
Dyck, C. H., Seibyl, J. P., Malison, R. T.et al. (1995). Age-related decline in striatal dopamine transporter binding with iodine-123-beta-CITSPECT [see comments]. J. Nucl. Med., 36(7), 1175–81Google Scholar
Varrone, A., Marek, K. L., Jennings, D., Innis, R. B. & Seibyl, J. P. (2001). [(123)I]beta-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson's disease and multiple system atrophy. Mov. Disord., 16(6), 1023–32CrossRefGoogle ScholarPubMed
Volkow, N. D., Ding, Y. S., Fowler, J. S.et al. (1996). Dopamine transporters decrease with age. J. Nucl. Med., 37(4), 554–9Google ScholarPubMed
Weeks, R. A., Piccini, P., Harding, A. E. & Brooks, D. J. (1996). Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington's disease. Ann. Neurol., 40(1), 49–54CrossRefGoogle ScholarPubMed
Wichmann, T. & DeLong, M. R. (1996). Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol., 6(6), 751–8CrossRefGoogle ScholarPubMed
Wilson, J. M., Levey, A. I., Rajput, A.et al. (1996). Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson's disease. Neurology, 47(3), 718–26CrossRefGoogle ScholarPubMed
Young, A. B., Penney, J. B., Starosta-Rubinstein, S.et al. (1986). PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline. Ann. Neurol., 20(3), 296–303CrossRefGoogle ScholarPubMed
Young, A. B., Penney, J. B., Starosta-Rubinstein, S.et al. (1987). Normal caudate glucose metabolism in persons at risk for Huntington's disease. Arch. Neurol., 44(3), 254–7CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • PET/SPECT
    • By Maja Trošt, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, Vijay Dhawan, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, Andrew Feigin, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, David Eidelberg, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • PET/SPECT
    • By Maja Trošt, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, Vijay Dhawan, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, Andrew Feigin, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, David Eidelberg, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • PET/SPECT
    • By Maja Trošt, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, Vijay Dhawan, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, Andrew Feigin, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA, David Eidelberg, Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, USA
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.021
Available formats
×