Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T19:16:46.677Z Has data issue: false hasContentIssue false

10 - Cannabinoid ‘model’ psychosis, dopamine–cannabinoid interactions and implications for schizophrenia

Published online by Cambridge University Press:  07 December 2009

D. Cyril D'souza
Affiliation:
Yale University School of Medicine
Hyun-Sang Cho
Affiliation:
Yale University School of Medicine
Edward B. Perry
Affiliation:
Yale University School of Medicine
John H. Krystal
Affiliation:
Yale University School of Medicine
David Castle
Affiliation:
Mental Health Research Institute, Melbourne
Robin Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

Hypotheses relating to the association between cannabis and psychosis may be divided into two groups. The exogenous hypothesis, which has received far greater attention, suggests that the consumption of cannabinoid compounds produces psychotic disorders by mechanisms that are extrinsic to the pathophysiology of naturally occurring psychoses. As discussed elsewhere in this book, converging evidence from epidemiological, genetic, neurochemical, pharmacological and postmortem studies have provided support for an association between ‘cannabis and madness’ (see Chapters 3, 6, 8 and 9). These data also suggest a second, relatively nascent endogenous hypothesis, according to which cannabinoid (CB1) receptor dysfunction may contribute to the pathophysiology of psychosis and/or schizophrenia, and further, that the putative CB1 receptor dysfunction may be unrelated to the consumption of cannabinoid compounds.

This chapter addresses the exogenous hypothesis of cannabis consumption and psychosis. First, we review studies from a number of sources, supporting an association between cannabis consumption and the manifestation of psychotic symptoms in humans (the interested reader is referred to Chapters 3 and 5 for a more detailed exposition). We then detail a recent pharmacological study that assessed the effects of exposure to the principal psychoactive constituent of cannabis, Δ9- tetrahydrocannabinol (Δ9-THC) in patients with schizophrenia and normal controls. We conclude by suggesting possible mechanisms by which cannabis may induce psychosis and articulate the implications of these findings for a potential endocannabinoid contribution to the pathophysiology of schizophrenia.

Type
Chapter
Information
Marijuana and Madness
Psychiatry and Neurobiology
, pp. 142 - 165
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th edn. Washington, DC: American Psychiatric Association
Ames, F. (1958). A clinical and metabolic study of acute intoxication with Cannabis sativa and its role in model psychoses. J. Mental Sci., 104, 972–999CrossRefGoogle ScholarPubMed
Anderson, J. J., Kask, A. M. and Chase, T. N. (1996). Effects of cannabinoid receptor stimulation and blockade on catalepsy produced by dopamine receptor antagonists. Eur. J. Pharmacol., 295, 163–168CrossRefGoogle ScholarPubMed
Ashton, C. H. (2001). Pharmacology and effects of cannabis: a brief review. Br. J. Psychiatry, 179, 270–271Google Scholar
Auclair, N., Otani, S., Soubrie, P. and Crepel, F. (2000). Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J. Neurophysiol., 83, 3287–3293CrossRefGoogle ScholarPubMed
Azorlosa, J. L., Heishman, S. J., Stitzer, M. L. and Mahaffey, J. M. (1992). Marijuana smoking: effect of varying delta 9-tetrahydrocannabinolcontent and number of puffs. J. Pharmacol. Exp. Ther., 261, 114–122Google ScholarPubMed
Baker, P. B., Taylor, B. J. and Gough, T. A. (1981). The tetrahydrocannabinol and tetrahydrocannabinolic acid content of cannabis products. J. Pharm. Pharmacol., 33, 369–372CrossRefGoogle ScholarPubMed
Banerjee, S. P., Snyder, S. H. and Mechoulam, R. (1975). Cannabinoids: influence on neurotransmitter uptake in rat brain. J. Pharmacol. Exp. Ther., 194, 74–81Google ScholarPubMed
Berk, M., Brook, S. and Trandafir, A. I. (1998). A comparison of olanzapine with haloperidol in cannabis-induced psychotic: a double-blind randomized controlled trial. Int. Clin. Psychopharmacol., 14, 177–180Google Scholar
Bloom, A. S. (1982). Effect of delta-9-tetrahydrocannabinol on the synthesis of dopamine and norepinephrine in mouse brain synaptosomes. J. Pharmacol. Exp. Ther., 221, 97–103Google ScholarPubMed
Bonnin, A., de-Miguel, R., Castro, J. G., Raos, J. A. and Fernadez-Ruiz, J. J. (1996). Effects of perinatal exposure to delta-9-THC on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in rat brain. J. Mol. Neurosci., 7, 291–308CrossRefGoogle ScholarPubMed
Bornheim, L. M. and Grillo, M. P. (1998). Characterization of cytochrome P450 3A inactivation by cannabidiol: possible involvement of cannabidiol-hydroxyquinone as a P450 inactivator. Chem. Res. Toxicol., 11, 1209–1216CrossRefGoogle ScholarPubMed
Bremner, J. D., Krystal, J. H., Putnam, F. W.et al. (1998). Measurement of dissociative states with the Clinician-Administered Dissociative States Scale (CADSS). J. Trauma Stress 11, 125–136CrossRefGoogle Scholar
Chait, L. D. and Perry, J. L. (1992). Factors influencing self-administration of, and subjective response to, placebo marijuana, Behav. Pharmacol., 3, 545–552Google ScholarPubMed
Chen, J., Paredes, W., Lowinson, J. H. and Gardner, E. L. (1990). Delta-9-tetrahydrocannabinol enhances presynaptic dopamine efflux in the medial prefrontal cortex. Eur. J. Pharmacol., 190, 259–262Google ScholarPubMed
Chen, J., Paredes, W., Lowinson, J. H. and Gardner, E. L. (1991). Strain specific facilitation of dopamine efflux by delta-9-tetrahydrocannabinol in the nucleus accumbens of the rats: an in vivo microdialysis study. Neurosci. Lett., 129, 136–140CrossRefGoogle ScholarPubMed
Chen, J., Marmur, R., Pulles, A., Paredes, W. and Gardner, E. L. (1993). Ventral tegmental microinjection of delta 9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: evidence for local neural action by marijuana's psychoactive ingredient. Brain Res., 621, 65–70CrossRefGoogle Scholar
Collins, D. R., Pertwee, R. G. and Davies, S. N. (1994). The action of synthetic cannabinoids on the induction of long-term potentiation in the rat hippocampal slice. Eur. J. Pharmacol., 259, R7–R8CrossRefGoogle ScholarPubMed
Collins, D. R., Pertwee, R. G. and Davies, S. N. (1995). Prevention by the cannabinoid antagonist, SR141716A, of cannabinoid-mediated blockade of long-term potentiation in the rat hippocampal slice. Br. J. Pharmacol., 115, 869–870CrossRefGoogle ScholarPubMed
Diana, M., Melis, M. and Gessa, G. L. (1998). Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids, Eur. J. Neurosci., 10, 2825–2830CrossRefGoogle ScholarPubMed
Dolan, R. J., Fletcher, P., Frith, C. D.et al. (1995). Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature, 378, 180–182CrossRefGoogle Scholar
Ferrari, F., Ottani, A. and Giuliani, D. (1999). Influence of the cannabinoid agonist HU 210 on cocaine and CQP 201–403-induced behavioural effects in rat. Life Sci., 65, 823–831CrossRefGoogle ScholarPubMed
French, E. D., Dillon, K. and Wu, X. (1997). Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport, 8, 649–652CrossRefGoogle ScholarPubMed
Gellman, R. L. and Aghajanian, G. K. (1993). Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res., 600, 63–73CrossRefGoogle ScholarPubMed
Gessa, G. L., Melis, M., Muntoni, A. L. and Diana, M. (1998). Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur. J. Pharmacol., 341, 39–44CrossRefGoogle ScholarPubMed
Gioanni, Y., Thierry, A. M., Glowinski, J. and Tassin, J. P. (1998). Alpha1-adrenergic, D1, and D2 receptors interactions in the prefrontal cortex: implication for modality of action of different types of neuroleptics. Synapse, 30, 362–3703.0.CO;2-W>CrossRefGoogle Scholar
Giuffrida, A., Parsons, L. H., Kerr, T. M.et al. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci., 2, 358–363CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1987). The circuitry of primate prefrontal cortex and the regulation of behavior by representational memory. In Handbook of Physiology: The Nervous System, ed. V. M. Mountcastle, pp. 373–417. Bethesda, MD: American Physiological Society
Gorriti, M. A., Rodriguez de Fonseca, F., Navarro, M. and Palomo, T. (1999) Chronic (–)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur. J. Pharmacol., 365, 33–42CrossRefGoogle Scholar
Grobin, A. C. and Deutch, A. Y. (1998). Dopaminergic regulation of extracellular gamma-aminobutyric acid levels in the prefrontal cortex. J. Pharmacol. Exp. Ther., 285, 350–357Google ScholarPubMed
Hájos, N., Katona, I., Naiem, S. S.et al. (2000). Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci., 12, 3239–3249CrossRefGoogle ScholarPubMed
Hampson, A. J., Grimaldi, M., Lolic, M.et al. (2000). Neuroprotective antioxidants from marijuana, Ann. NY Acad. Sci., 899, 274–282CrossRefGoogle ScholarPubMed
Herkenham, M., Lynn, A. B., Little, M. D.et al. (1990). Cannabinoid receptor localization in brain. Proc. Natl Acad. Sci., 87, 1932–1936CrossRefGoogle ScholarPubMed
Herkenham, M., Lynn, A. B., Johnson, M. R.et al. (1991). Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci., 11, 563–583CrossRefGoogle ScholarPubMed
Hernandez, M. L., Garcia-Gil, L., Berrendro, F., Ramos, J. A. and Fernandez-Ruiz, J. J. (1997). δ-9-tetrahydrocannabinol increases the activity of tyrosine hydroxylase in cultured fetal mesencephalic neurons. J. Mol. Neurosci., 8, 83–91CrossRefGoogle ScholarPubMed
Hershkowitz, M., Goldman, R. and Raz, A. (1977). Effect of cannabinoids on neurotransmitter uptake. ATPase activity and morphology of mouse brain synaptosomes. Biochem. Pharmacol., 26, 1327–1331CrossRefGoogle Scholar
Hoffman, A. F. and Lupica, C. R. (2000). Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J. Neurosci., 20, 2470–2479CrossRefGoogle ScholarPubMed
Isbell, H., Gorodetsky, C. W., Jasinski, D. R.et al. (1967). Effects of delta-9-transhydrocannabinol in man. Psychopharmacologia, 11, 184–188CrossRefGoogle ScholarPubMed
Johnson, K. M., Ho, B. T. and Dewey, W. L. (1976). Effects of delta9-tetrahydrocannabinol on neurotransmitter accumulation and release mechanisms in rat forebrain synaptosomes. Life Sci., 19, 347–356CrossRefGoogle ScholarPubMed
Jones, R. T. (1971). Tetrahydrocannabinol and the marijuana-induced social “high,” or the effects of the mind on marijuana. Ann. NY Acad. Sci., 191, 155–165CrossRefGoogle Scholar
Kay, S. R. and Opler, L. A. (1986). Positive and Negative Symptoms Scale (PANSS) Rating Manual. Bronx, New York: Albert Einstein College of Medicine, Department of Psychiatry
Leweke, F. M., Schneider, U., Thies, M., Munte, T. F. and Emrich, H. M. (1999). Effects of synthetic delta-9-tetrahydrocannabinol on binocular depth inversion of natural and artificial objects in man. Psychopharmacologia, 142, 230–235CrossRefGoogle ScholarPubMed
Maitre, L., Staehelin, M. and Bein, H. J. (1970). Effect of an extract of cannabis and of some cannabinols on catecholamine metabolism in rat brain and heart. Agents Actions, 1, 136–143CrossRefGoogle ScholarPubMed
Marsicano, G. and Lutz, B. (1999). Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225CrossRefGoogle ScholarPubMed
Masserano, J. M., Karoum, F. and Wyatt, R. J. (1999). SR 141716A, a CB1 cannabinoid receptor antagonist, potentiates the locomotor stimulant effects of amphetamine and apomorphine. Behav. Pharmacol., 10, 429–432CrossRefGoogle ScholarPubMed
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. and Bonner, T. I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346, 561–564CrossRefGoogle ScholarPubMed
Mayor's Committee On Marijuana (1944). The Marijuana Problem in the City of New York. Lancaster, PA: Jacques Catell Press
McPartland, J. M. and Russo, E. B. (2001). Cannabis and cannabis extracts: greater than the sum of their parts?J. Cannabis Ther., 1, 103–132CrossRefGoogle Scholar
Mechoulam, R. and Ben-Shabat, S. (1999). From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of cannabis. Nature Prod. Rep., 16, 131–143CrossRefGoogle ScholarPubMed
Meschler, J. P., Conley, T. J. and Howlett, A. C. (2000). Cannabinoid and dopamine interaction in rodent brain: effects on locomotor activity. Pharmacol. Biochem. Behav., 67, 567–573CrossRefGoogle ScholarPubMed
Miller, L. L. (1984). Marijuana: acute effects on human memory. In The Cannabinoids: Chemical, Pharmacological and Therapeutic Aspects, ed. S. Agurell, W. L. Dewey and R. E. Willette, pp. 21–46. New York, NY: Academic PressCrossRef
Miller, L. and Branconnier, R. J. (1983). Cannabis: effects on memory and the cholinergic limbic system. Psychol. Bull., 99, 441–456CrossRefGoogle Scholar
Misner, D. L. and Sullivan, J. M. (1999). Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J. Neurosci., 19, 6795–6805CrossRefGoogle ScholarPubMed
Miyamoto, A., Yamamoto, T., Ohno, M.et al. (1996). Roles of dopamine D1 receptors in delta 9-tetrahydrocannabinol-induced expression of Fos protein in the rat brain. Brain Res., 710, 234–240CrossRefGoogle ScholarPubMed
Nicoll, R. A. and Malenka, R. C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 377, 115–118CrossRefGoogle ScholarPubMed
Nowicky, A. V., Teyler, T. J. and Vardaris, R. M. (1987). The modulation of long-term potentiation by delta-9-tetrahydrocannabinol in the rat hippocampus, in vitro. Brain Res. Bull., 19, 663–672CrossRefGoogle Scholar
Patel, S. and Hillard, C. J. (2003). Cannabinoid-induced Fos expression within A10 dopaminergic neurons. Cannabinoid CB(1) receptor agonists produce cerebellar dysfunction in mice. J. Pharmacol. Exp. Ther., 297, 629–637Google Scholar
Perlstein, W. M., Carter, C. S., Noll, D. C. and Cohen, J. D. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am. J. Psychiatry, 158, 1105–1113CrossRefGoogle Scholar
Pettit, D. A., Harrison, M. P., Olson, J. M., Spencer, R. F. and Cabral, G. A. (1998). Immuno-histochemical localization of the neural cannabinoid receptor in rat brain. J. Neurosci. Res., 51, 391–4023.0.CO;2-A>CrossRefGoogle Scholar
Piomelli, D., Giuffrida, A., Calignano, A. and Rodriguez de Fonseca, F. (2000). The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol. Sci., 21, 218–224CrossRefGoogle ScholarPubMed
Pirot, S., Godbout, R., Mantz, J.et al. (1992). Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience, 49, 857–865CrossRefGoogle ScholarPubMed
Pistis, M., Porcu, G., Melis, M., Diana, M. and Gessa, G. L. (2001). Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur. J. Neurosci., 14, 96–102CrossRefGoogle ScholarPubMed
Poddar, M. K. and Dewey, W. L. (1980). Effects of cannabinoids of catecholamine uptake and release in hypothalmic and striatal synaptosomes. J. Pharmacol. Exp. Ther., 214, 63–67Google Scholar
Rodriguez de Fonseca, F., Del Arco, I., Martin-Calderon, J. L., Gorriti, M. A. and Navarro, M. (1998). Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol. Dis., 5, 483–501CrossRefGoogle ScholarPubMed
Sullivan, J. M. (1999). Mechanisms of cannabinoid-receptor-mediated inhibition of synaptic transmission in cultured hippocampal pyramidal neurons. J. Neurophysiol., 82, 1286–1294CrossRefGoogle ScholarPubMed
Szabo, B., Siemes, S. and Wallmichrath, I. (2002). Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci., 5, 2057–2061CrossRefGoogle Scholar
Tanda, G., Pontieri, F. E. and Di Chiara, G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science, 276, 2048–2050CrossRefGoogle ScholarPubMed
Terranova, J. P., Michaud, J. C., Fur, G. and Soubrie, P. (1995). Inhibition of long-term potentiation in rat hippocampal slices by anandamide and WIN55212–2: reversal by SR141716 A, a selective antagonist of CB1 cannabinoid receptors. Naunyn-Schmiedebergs Arch. Pharmakol., 352, 576–579CrossRefGoogle ScholarPubMed
Tsou, K., Brown, S., Sanudo-Pena, M. C., Mackie, K. and Walker, J. M. (1998). Immuno-histochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience, 83, 393–411CrossRefGoogle Scholar
Tsou, K., Mackie, K., Sanudo-Pena, M. C. and Walker, J. M. (1999). Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience, 93, 969–975CrossRefGoogle ScholarPubMed
Wilson, R. I. and Nicoll, R. A. (2001). Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature, 410, 588–592CrossRefGoogle ScholarPubMed
Wilson, R. I. and Nicoll, R. A. (2002). Endocannabinoid signalling in the brain. Science, 296, 678–682CrossRefGoogle Scholar
Wu, X. and French, E. D. (2000). Effects of chronic delta9-tetrahydrocannabinol on rat midbrain dopamine neurons: an electrophysiological assessment. Neuropharmacologia, 39, 391–398CrossRefGoogle Scholar
Zuardi, A. W., Shirakawa, I., Finkelfarb, E. and Karniol, I. G. (1982). Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects. Psychopharmalogia, 76, 245–250CrossRefGoogle ScholarPubMed
Zuardi, A. W., Morais, S. L., Guimaraes, F. S. and Mechoulam, R. (1995). Antipsychotic effect of cannabidiol. J. Clin. Psychiatry, 56, 485–486Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×