Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T02:33:55.858Z Has data issue: false hasContentIssue false

4 - Earth's orbital parameters and cycle stratigraphy

Published online by Cambridge University Press:  05 June 2012

Felix M. Gradstein
Affiliation:
Universitetet i Oslo
James G. Ogg
Affiliation:
Purdue University, Indiana
Alan G. Smith
Affiliation:
University of Cambridge
Get access

Summary

The Milankovitch theory that quasi-periodic oscillations in the Sun-Earth position have induced significant 104–106-year-scale variations in the Earth's stratigraphic record of climate is widely acknowledged. This chapter discusses the Earth's orbital parameters, the nature of orbitally forced incoming solar radiation, fossil orbital signals in Phanerozoic stratigraphy, and the use of these orbital signals in calibrating geologic time.

INTRODUCTION

Over the past century, paleoclimatological research has led to wide acceptance that quasi-periodic oscillations in the Sun—Earth position have induced significant variations in the Earth's past climate. These orbitally forced variations influenced climate-sensitive sedimentation, and thereby came to be fossilized in the Earth's cyclic stratigraphic record. The detection of orbital variations in Earth's cycle stratigraphy was progressively facilitated by advancements in celestial mechanics, which have provided more accurate models of the Earth's orbital—rotational behavior through geological time, and by improvements in data collection and analysis.

A principal outcome of the research has been the recognition that cycle stratigraphy, when shown to carry the signal specific to Earth's orbital behavior, serves as a powerful geochronometer. High-quality data collected over the past decade, in particular, have proven to have faithfully recorded all of the orbital cycles predicted by modern celestial mechanics over 0–23 Ma.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×