Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T13:31:22.462Z Has data issue: false hasContentIssue false

A Novel Hypothesis for the Origin of Biramous Appendages in Crustaceans

Published online by Cambridge University Press:  17 July 2017

Michael J. Emerson
Affiliation:
San Diego Natural History Museum, P.O. Box 1390, San Diego, California 92112
Frederick R. Schram
Affiliation:
San Diego Natural History Museum, P.O. Box 1390, San Diego, California 92112

Extract

Phylogenetic Uncertainty.— Invertebrate zoologists have long debated the relationships of biramous-limbed Crustacea to other groups of arthropods. Haeckel (1866) recognized two groups of arthropods on the basis of respiratory anatomy. The Carides included the crustaceans, trilobites, xiphosures, and eurypterids; and the Tracheata, included the arachnids, insects, and myriapods. Work on the onychophorans (Mosely, 1874) indicated a link between annelids and the terrestrial myriapod-insect line, but this left the origins of the aquatic carides unresolved. Lankester (1881) demonstrated that the xiphosures were allied to the arachnids rather than to the crustaceans. These and other studies led Haeckel (1896) to revise his position and propose two separate lines of arthropods: one of primarily aquatic groups with primitively biramous appendages (crustaceans, trilobites, and chelicerates); and the other of primarily terrestrial groups with uniramous limbs (onychophorans, myriapods, and insects). Haeckel's new arrangement emphasized the convergent origins of trachea in the arachnids and uniramians. Korschelt and Heider (1890) preferred a monophyletic scheme with the two evolutionary lines united by a pre-onychophoran, “protostracan,” ancestor. By modern standards, however, this might indicate that the arthropods are a morphological grade, rather than a true clade.

Type
Research Article
Copyright
Copyright © 1990 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akam, M. 1987. The molecular basis for metameric pattern in the Drosophila embryo. Development, 101:122.Google Scholar
Akam, M., Dawson, I., and Tear, G. 1988. Homeotic genes and the control of segment diversity. Development (Supplement), 104:161168.Google Scholar
Anderson, D.T. 1973. Embryology and Phylogeny in Annelids and Arthropods. Pergamon Press, New York, 495 p.Google Scholar
Bergström, J. 1979. Morphology of fossil arthropods as a guide to phylogenetic relationships, p. 356. In, Gupta, A. P. (ed.), Arthropod Phylogeny, Van Nostrand Reinhold, New York.Google Scholar
Bergström, J. 1980. Morphology and systematics of early arthropods. Abhandlungen des naturwissenschaftlichen Vereins in Hamburg, 23:742.Google Scholar
Birshtein, Ya. A. 1960. Podklass Cephalocarida: Chlenistonge, Trilobitoobraznie, Rakoobraznie, p. 421422. In, Orlov, Ya. A. (ed.), Osnovy Paleontologii, Akademii Nauk, Moskva.Google Scholar
Briggs, D.E.G. 1976. The Arthropod Branchiocaris n. gen., Middle Cambrian, Burgess Shale, British Columbia. Geological Survey of Canada, Bulletin, 264:129.Google Scholar
Briggs, D.E.G., and Fortey, R.A. 1989. The early radiation and relationships of the major arthropod groups. Science, 246:241243.Google Scholar
Brooks, H.K. 1955. A crustacean from the Tesnus Formation of Texas. Journal of Paleontology, 29:252256.Google Scholar
Cohen, S.M. 1990. Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature, 343: 173177.Google Scholar
Dohle, W., and Scholtz, G. 1988. Clonal analysis of the crustacean segment; the discordance between genealogical and segmental borders. Development (Supplement), 104:147:60.Google Scholar
Emerson, M.J., and Schram, F.R. in press. Remipedia. Part II. Paleontology. Proceedings of the San Diego Society of Natural History.Google Scholar
Gupta, A.P. 1979. Arthropod Phylogeny. Van Nostrand Reinhold, New York, 762 p.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Berlin.Google Scholar
Haeckel, E. 1896. Systematische Phylogenie der wierbellosen Thiere (Invertebrata). Zweiter Theil des Entwurfs einer systematischen Phylogenie. Berlin.Google Scholar
Handlirsch, A. 1937. Neure Untersuchungen über die fossilen Insekten mit Ergänzungen und Nachträgen sowie Ausblichen auf phylogenetische, palaeogeographische und allgemein biologishe Probleme. I. Teil. Annalen des naturhistorischen Museums in Wien, 48:1140.Google Scholar
Hessler, R.R. 1969. Cephalocarida, p. R120R128. In Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4, Vol. 1, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hessler, R.R., and Newman, W.A. 1975. A trilobitomorph origin for Crustacea. Fossils and Strata, 4:437459.CrossRefGoogle Scholar
Jacobs, D.K., in press. Selector genes and the Cambrian radiation of Bilateria. Proceedings of the National Academy of Sciences.Google Scholar
Komai, T., and Tung, Y.M. 1931. On some points of the internal structure of Squilla oratoria . Memoirs of the College of Science, Kyoto Imperial University, 6:115.Google Scholar
Korschelt, E., and Heider, K. 1890. Lehrbuch der vergleichenden Entwicklungsgeschichte der Wierbellosen Thiere. Specieller Teil. 1 Lief. Jena.Google Scholar
Kukalova-Peck, J. 1983. Origin of the insect wing and wing articulation from the arthropodan leg. Canadian Journal of Zoology, 61:16181669.Google Scholar
Lankester, E.R. 1881. Limulus, an arachnid. Quarterly Journal of Microscopical Science, 21:504548.Google Scholar
Lankester, E.R. 1904. The structure and classification of the Arachnida. Quarterly Journal of Microscopical Science, 190:165269.Google Scholar
Lawrence, P.A. 1988. The present status of the parasegment. Development (Supplement), 104:6165.Google Scholar
Manton, S.M. 1928. On the embryology of a mysid crustacean, Hemimysis lamornae. Philosophical Transactions of the Royal Society of London (B) 216:363463.Google Scholar
Manton, S.M. 1964. Mandibular mechanisms and the evolution of Arthropoda. Philosophical Transactions of the Royal Society of London, (B) 247:1183.Google Scholar
Manton, S.M. 1977. The Arthropoda. Oxford University Press, Oxford, 527 p.Google Scholar
Martinez-Arias, A., and Lawrence, P.A. 1985. Parasegments and compartments. Nature, 313:639–42.Google Scholar
Mikulic, D., Briggs, D.E.G., and Klussendorf, J. 1985a. A Silurian soft-bodied biota. Science, 228:715717.Google Scholar
Mikulic, D., Briggs, D.E.G., and Klussendorf, J. 1985b. A new exceptionally preserved biota from the Lower Silurian of Wisconsin, U.S.A. Philosophical Transactions of the Royal Society of London, (B) 311:7585.Google Scholar
Minelli, A., and Bortoletto, S. 1987. Myriapod metamerism and arthropod segmentation. Biological Journal of the Linnean Society of London, 33:323–43.Google Scholar
Mosely, H.N. 1874. Peripatus capensis, Grube. Observations on its structure and development. Proceedings of the Royal Society, 22:344350.Google Scholar
Nüsslein-Volhard, C., and Weischaus, E. 1980. Mutations affecting segment number and polarity in Drosophila . Nature, 287:795801.Google Scholar
Raymond, P. 1935. Leanchoilia and other Mid-Cambrian Arthropoda. Bulletin of the Museum of Comparative Zoology, 76:205230.Google Scholar
Reaka, M.L. 1975. Molting in stomatopod crustaceans I. Stages of the molt cycle, setagenesis, and morphology. Journal of Morphology, 146:5580.Google Scholar
Reaka, M.L. 1979. Patterns of molting frequencies in coral dwelling stomatopod Crustacea. Biological Bulletin, 156:328342.Google Scholar
Robison, R.A. 1990. Earliest known uniramous arthropod. Nature, 343:163164.Google Scholar
Sars, G.O. 1896. Fauna Norvegiae. Bund I. Phyllocarida og Phyllopoda. Christiania, 140 p.Google Scholar
Scheffel, H. 1965. Elektronenmikroskopische Untersuchungen über den Bau der Cerebraldrüse der Chilopoden. Zoologisches Jahrbuch Abteilung Physiologie, 71:624–40.Google Scholar
Scholl, G. 1963. Embryologische Untersuchungen an Tanaidacean (Heterotanais oerstedi). Zoologisches Jahrbuch Abteilung Anatomie, 80:500554.Google Scholar
Schram, F.R. 1969. Some middle Pennsylvanian Hoplocarida and their phylogenetic significance. Fieldiana: Geology, 12:235289.Google Scholar
Schram, F.R. 1978. Arthropods: a convergent phenomenon. Fieldiana: Geology, 39:61108.Google Scholar
Schram, F.R. 1982. The fossil record and evolution of Crustacea, p. 93147. In Abele, L.G. (ed.), The Biology of Crustacea, Vol. 1. Academic Press, New York.Google Scholar
Schram, F.R. 1986. Crustacea. Oxford University Press, New York, 606 p.Google Scholar
Schram, F.R., and Emerson, M.J. 1986. The great Tesnus fossil expedition of 1985. Environment Southwest, 515:1621.Google Scholar
Schram, F.R., and Rolfe, W.D. 1982. New euthycarcinoid arthropods from the Upper Pennsylvanian of France and Illinois. Journal of Paleontology, 56:14341450.Google Scholar
Schram, F.R., Yager, J., and Emerson, M.J. 1986. Remipedia, Part I, Systematics. Memoirs of the San Diego Society of Natural History, 15:160.Google Scholar
Scott, M.P., and O'Farrell, P.H. 1986. Spatial programming of gene expression in early Drosophila embryogenesis. Annual Review of Cell Biology, 2:4980.Google Scholar
Shiino, S.M. 1942. Studies on the embryology of Squilla oratoria. Memoirs of the College of Science, Kyoto Imperial University 17(B):11174.Google Scholar
Siewing, R. 1956. Untersuchungen zur Morphologie der Malacostraca. Zoologisches Jahrbuch Abteilung Anatomie, 75:39176.Google Scholar
Snodgrass, R.E. 1938. Evolution of the Annelida, Onychophora, and Arthropoda. Smithsonian Miscellaneous Collections, 97(6):1159.Google Scholar
Steiner, E. 1976. Establishment of compartments in the developing leg imaginal discs of Drosophila melanogaster . Wilhelm Roux's Archive of Developmental Biology, 180:930.Google Scholar
Størmer, L. 1944. On the relationships and phylogeny of the fossil and Recent Arachnomorpha. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv. Klasse, 5:158.Google Scholar
Strömberg, J.O. 1967. Contribution to the embryology of bopyrid isopods with special reference to Bopyroides, Hemiarthrus, and Pseudione . Sarsia, 47:146.Google Scholar
Tiegs, O.W., and Manton, S.M. 1958. The evolution of the Arthropoda. Biological Reviews, 33:255337.Google Scholar
Weisblat, D.A., Price, D.J., and Wedeen, C.J. 1988. Segmentation in leech development. Development (Supplement), 104:161168.Google Scholar
Weygoldt, P. 1958. Die Embryonalentwicklung des Amphipoden Gammmarus pulex pulex . Zoologisches Jahrbuch Abteilung Anatomie, 77:51110.Google Scholar
Whittington, H.B. 1975. The enigmatic animal Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, (B) 271:143.Google Scholar
Whittington, H.B. 1985. Tegopelte gigas, a second soft-bodied trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology, 59:12511274.Google Scholar
Whittington, H.B., and Briggs, D.E.G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, (B) 309:569609.Google Scholar
Yager, J. 1981. Remipedia, a new class of Crustacea from a marine cave in the Bahamas. Journal of Crustacean Biology, 1:328333.CrossRefGoogle Scholar