Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T05:55:23.600Z Has data issue: false hasContentIssue false

Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey

Published online by Cambridge University Press:  29 January 2019

Tingting Liu
Affiliation:
Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA email: tingting@astro.umd.edu
Suvi Gezari
Affiliation:
Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA email: tingting@astro.umd.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We conducted a systematic search for periodically varying quasars, which are predicted manifestations of sub-pc supermassive black hole binaries (SMBHBs), in the Pan-STARRS1 Medium Deep Survey (PS1 MDS). Since the normal variability of quasars can also mimic periodicity over a small number of cycles, we have extended the temporal baseline by monitoring the candidates with the Discovery Channel Telescope and the Las Cumbres Observatory telescopes. We have also adopted a more rigorous method to evaluate the significance of the periodic candidates, by considering in the light curves a “red noise” background modeled as the Damped Random Walk process. While none of the candidates can be resolved by the current pulsar timing arrays (PTAs) as individual gravitational wave sources, the Large Synoptic Survey Telescope is capable of finding more periodic candidates, some of which are likely to be detected by the PTA experiment with the Square Kilometre Array.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2019 

References

Charisi, M., Bartos, I., Haiman, Z., et al. 2016, MNRAS, 463, 2145Google Scholar
D’Orazio, D. J., Haiman, Z., & MacFadyen, A., 2013, MNRAS, 436, 2997Google Scholar
D’Orazio, D. J., Haiman, Z., & Schiminovich, D., 2015, Nature, 525, 351Google Scholar
Graham, M. J., Djorgovski, S. G., Stern, D., et al. 2015, Nature, 518, 74Google Scholar
Graham, M. J., Djorgovski, S. G., Stern, D., et al. 2015, MNRAS, 453, 1562Google Scholar
Gold, R., Paschalidis, V., Etienne, Z. B., Shapiro, S. L., & Pfeiffer, H. P., 2014, Phys. Rev. D, 89, 064060Google Scholar
Heinis, S., Gezari, S., Kumar, S., et al. 2016, ApJ, 826, 62Google Scholar
Horne, J. H. & Baliunas, S. L., 1986, ApJ, 302, 757Google Scholar
Kelly, B. C., Bechtold, J., & Siemiginowska, A., 2009, ApJ, 698, 895Google Scholar
Kormendy, J. & Ho, L. C., 2013, ARAA, 51, 511Google Scholar
Liu, T., Gezari, S., Heinis, S., et al. 2015, ApJ, 803, L16Google Scholar
Liu, T., Gezari, S., Burgett, W., et al. 2016, ApJ, 833, 6Google Scholar
Liu, T., Gezari, S. et al., in preparation.Google Scholar
MacFadyen, A. I. & Milosavljević, M., 2008, ApJ, 672, 83Google Scholar
Roedig, C., Krolik, J. H., & Miller, M. C., 2014, ApJ, 785, 115Google Scholar
Rosado, P. A., Sesana, A., & Gair, J., 2015, MNRAS, 451, 2417Google Scholar
Sesar, B., Ivezić, Ž., Lupton, R. H., et al. 2007, AJ, 134, 2236Google Scholar
Shi, J.-M., Krolik, J. H., Lubow, S. H., & Hawley, J. F., 2012, ApJ, 749, 118Google Scholar
Noble, S. C., Mundim, B. C., Nakano, H., et al. 2012, ApJ, 755, 51Google Scholar
Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, AJ, 122, 549Google Scholar
Zoghbi, A., Reynolds, C., & Cackett, E. M., 2013, ApJ, 777, 24Google Scholar