Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T18:58:29.260Z Has data issue: false hasContentIssue false

Study of diffraction data sets using factor analysis: a new technique for comparing mineralogical and geochemical data and rapid diagnostics of the mineral composition of large collections of rock samples

Published online by Cambridge University Press:  07 June 2019

Ekaterina Fomina*
Affiliation:
Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14, Fersmana Street, 184209 Apatity, Russia
Evgeniy Kozlov
Affiliation:
Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14, Fersmana Street, 184209 Apatity, Russia
Svetlana Ivashevskaja
Affiliation:
Institute of Geology, Karelian Research Centre, Russian Academy of Sciences, 11, Pushkinskaya Street, 185910 Petrozavodsk, Russia
*
a)Author to whom correspondence should be addressed. Electronic mail: fomina_e.n@mail.ru

Abstract

This paper presents an example of comparing geochemical and mineralogical data by means of the statistical analysis of the X-ray diffraction patterns and the chemical compositions of bulk samples. The proposed methodology was tested on samples of metasomatic rocks from two geologically different objects. Its application allows us to mathematically identify all the main, secondary and some accessory minerals, to qualitatively estimate the contents of these minerals, as well as to assess their effect on the distribution of all petrogenic and investigated trace elements in a short period of time at the earliest stages of the research. We found that the interpretation of the results is significantly influenced by the number of samples studied and the quality of diffractograms.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angeyo, K. H., Gari, S., Mangala, J. M., and Mustapha, A. O. (2012). “Principal component analysis-assisted energy dispersive X-ray fluorescence spectroscopy for non-invasive quality assurance characterization of complex matrix materials,” X-Ray Spectrom. 41, 321327. https://doi.org/10.1002/xrs.2405Google Scholar
Artyushkova, K. and Fulghum, J. E. (2001). “Identification of chemical components in XPS spectra and images using multivariate statistical analysis methods,” J. Electron Spectros. Relat. Phenomena 121, 3355. https://doi.org/10.1016/S0368-2048(01)00325-5Google Scholar
Caliandro, R., Di Profio, G., and Nicolotti, O. (2013). “Multivariate analysis of quaternary carbamazepine–saccharin mixtures by X-ray diffraction and infrared spectroscopy,” J. Pharm. Biomed. Anal. 78–79, 269279. https://doi.org/10.1016/j.jpba.2013.01.042Google Scholar
Chen, Z. P., Morris, J., Martin, E., Hammond, R. B., Lai, X., Ma, C., Purba, E., Roberts, K. J., and Bytheway, R. (2005). “Enhancing the signal-to-noise ratio of X-ray diffraction profiles by smoothed principal component,” Analysis. Anal. Chem. 77, 65636570. https://doi.org/10.1021/ac050616cGoogle Scholar
Davis, J. C. (2002). Statistics and Data Analysis in Geology (Wiley, New York).Google Scholar
Fomina, E., Kozlov, E., Lokhov, K., Lokhova, O., and Bocharov, V. (2019). “Carbon sources and the graphitization of carbonaceous matter in precambrian rocks of the keivy terrane (Kola Peninsula, Russia),” Minerals 9, 94. https://doi.org/10.3390/min9020094Google Scholar
Guccione, P., Palin, L., Belviso, B. D., Milanesio, M., and Caliandro, R. (2018). “Principal component analysis for automatic extraction of solid-state kinetics from combined in situ experiments,” Phys. Chem. Chem. Phys. 20, 1956019571. https://doi.org/10.1039/C8CP02481BGoogle Scholar
Izenman, A. J. (2008). Modern Multivariate Statistical Techniques (Springer, New York). https://doi.org/10.1007/978-0-387-78189-1Google Scholar
Jenkins, R. and Snyder, R. L. (1996). Introduction to X-ray Powder Diffractometry (Wiley, New York). https://doi.org/10.1002/9781118520994Google Scholar
Jolliffe, I. T. (2002). Principal Component Analysis (Springer, New York). https://doi.org/10.1007/b98835Google Scholar
Jöreskog, K. G., Klovan, J. E., and Reyment, R. A. (1976). Geological Factor Analysis (Elsevier, Amsterdam).Google Scholar
Kaiser, H. F. (1958). “The varimax criterion for analytic rotation in factor analysis,” Psychometrika 23, 187200. https://doi.org/10.1007/BF02289233Google Scholar
Kirian, R. A., White, T. A., Holton, J. M., Chapman, H. N., Fromme, P., Barty, A., Lomb, L., Aquila, A., Maia, F. R. N. C., Martin, A. V., Fromme, R., Wang, X., Hunter, M. S., Schmidt, K. E., and Spence, J. C. H. (2011). “Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals,” Acta Crystallogr. Sect. A Found. Crystallogr. 67, 131140. https://doi.org/10.1107/S0108767310050981Google Scholar
Klug, H. P. and Alexander, L. E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York).Google Scholar
Kozlov, E., Fomina, E., Sidorov, M., and Shilovskikh, V. (2018). “Ti-Nb mineralization of late carbonatites and role of fluids in its formation: petyayan-vara rare-earth carbonatites (Vuoriyarvi Massif, Russia),” Geosciences. (Basel) 8, 281. https://doi.org/10.3390/geosciences8080281Google Scholar
Mabied, A. F., Nozawa, S., Hoshino, M., Tomita, A., Sato, T., and Adachi, S. (2014). “Application of singular value decomposition analysis to time-dependent powder diffraction data of an in-situ photodimerization reaction,” J. Synchrotron Radiat. 21, 554560. https://doi.org/10.1107/S1600577514004366Google Scholar
Manceau, A., Marcus, M., and Lenoir, T. (2014). “Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy,” J. Synchrotron Radiat. 21, 11401147. https://doi.org/10.1107/S1600577514013526Google Scholar
Matos, C. R. S., Xavier, M. J., Barreto, L. S., Costa, N. B., and Gimenez, I. F. (2007). “Principal component analysis of X-ray diffraction patterns to yield morphological classification of brucite particles,” Anal. Chem. 79, 20912095. https://doi.org/10.1021/ac061991nGoogle Scholar
Moore, M. D., Cogdill, R. P., and Wildfong, P. L. D. (2009). “Evaluation of chemometric algorithms in quantitative X-ray powder diffraction (XRPD) of intact multi-component consolidated samples,” J. Pharm. Biomed. Anal. 49, 619626. https://doi.org/10.1016/j.jpba.2008.12.007Google Scholar
Palin, L., Caliandro, R., Viterbo, D., and Milanesio, M. (2015). “Chemical selectivity in structure determination by the time dependent analysis of in situ XRPD data: a clear view of Xe thermal behavior inside a MFI zeolite,” Phys. Chem. Chem. Phys. 17, 1748017493. https://doi.org/10.1039/C5CP02522BGoogle Scholar
Palin, L., Conterosito, E., Caliandro, R., Boccaleri, E., Croce, G., Kumar, S., van Beek, W., and Milanesio, M. (2016). “Rational design of the solid-state synthesis of materials based on poly-aromatic molecular complexes,” CrystEngComm 18, 59305939. https://doi.org/10.1039/C6CE00936KGoogle Scholar
Sastry, M. (1997). “Application of principal component analysis to X-ray photoelectron spectroscopy — the role of noise in the spectra,” J. Electron Spectros. Relat. Phenomena 83, 143150. https://doi.org/10.1016/S0368-2048(96)03092-7Google Scholar
Schmidt, M., Rajagopal, S., Ren, Z., and Moffat, K. (2003). “Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data,” Biophys. J. 84, 21122129. https://doi.org/10.1016/S0006-3495(03)75018-8Google Scholar
Selivanova, E., Lyalina, L., and Savchenko, Y. (2018). “Compositional and textural variations in hainite-(Y) and batievaite-(Y), Two rinkite-group minerals from the sakharjok massif, keivy alkaline province, NW russia,” Minerals 8, 458. https://doi.org/10.3390/min8100458Google Scholar
Smith, J. V. (1968). “The crystal structure of staurolite,” Am. Min. 53, 11391155.Google Scholar
Swan, A. R. H. and Sandilands, M. (1995). Introduction to Geological Data Analysis (Blackwell, Oxford).Google Scholar
Voronov, A., Urakawa, A., van Beek, W., Tsakoumis, N. E., Emerich, H., and Rønning, M. (2014). “Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: an efficient tool for data processing and analysis,” Anal. Chim. Acta 840, 2027. https://doi.org/10.1016/j.aca.2014.06.050Google Scholar
Walton, J. and Fairley, N. (2005). “Noise reduction in X-ray photoelectron spectromicroscopy by a singular value decomposition sorting procedure,” J. Electron Spectros. Relat. Phenomena 148, 2940. https://doi.org/10.1016/j.elspec.2005.02.003Google Scholar
Westphal, T., Bier, T. A., Takahashi, K., and Wahab, M. (2015). “Using exploratory factor analysis to examine consecutive in-situ X-ray diffraction measurements,” Powder Diffr. 30, 340348. https://doi.org/10.1017/S0885715615000731Google Scholar
Winter, J. K. and Ghose, S. (1979). “Thermal expansion and high-temperature crystal chemistry of the Al2SiO5polymorphs,” Am. Min. 64, 573586.Google Scholar
Wold, S., Esbensen, K., and Geladi, P. (1987). “Principal component analysis,” Chemom. Intell. Lab. Syst. 2, 3752. https://doi.org/10.1016/0169-7439(87)80084-9Google Scholar
Xie, Y., Last, G. V., Murray, C. J., and Mackley, R. (2003). Mineralogical and Bulk-Rock Geochemical Signatures of Ringold and Hanford Formation Sediments (Report PNNL-14202) (Pacific Northwest National Laboratory, Richland, Washington).Google Scholar
Yang, H., Dembowski, R. F., Conrad, P. G., and Downs, R. T. (2008). “Crystal structure and Raman spectrum of hydroxyl-bastnasite-(Ce), CeCO3(OH),” Am. Mineral. 93, 698701. https://doi.org/10.2138/am.2008.2827.Google Scholar
Supplementary material: File

Fomina et al. supplementary material

Fomina et al. supplementary material 1

Download Fomina et al. supplementary material(File)
File 5.6 MB