Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T14:11:06.440Z Has data issue: false hasContentIssue false

Jacobian Conjecture and semi-algebraic maps

Published online by Cambridge University Press:  23 June 2014

ALEXANDRE FERNANDES
Affiliation:
Departamento de Matemática, Universidade Federal do Ceará, 13560-970, Fortaleza-CE, Brazil. e-mail: alexandre.fernandes@ufc.br
CARLOS MAQUERA
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São Carlos, 13560-970, São Carlos-SP, Brazil. e-mail: cmaquera@icmc.usp.br
JEAN VENATO–SANTOS
Affiliation:
Faculdade de Matemática, Universidade Federal de Uberlândia, 38408-100, Uberlândia-MG, Brazil. e-mail: jvenatos@famat.ufu.br

Abstract

Let F:${\mathbb R}$n${\mathbb R}$n be a polynomial local diffeomorphism and let SF denote the set of not proper points of F. The Jelonek's real Jacobian Conjecture states that if codim(SF) ≥ 2, then F is bijective. In this work we prove a weak version of such Conjecture, but for more general maps than polynomial, namely: the semi-algebraic maps.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Balreira, E. C.Foliations and global inversion. Comment. Math. Helv. 85 (2010), 7393.CrossRefGoogle Scholar
[2]Balreira, E. C.Incompressibility and global inversion. Topol. Methods Nonlinear Anal. 35 (1) (2010), 6976.Google Scholar
[3]Bass, H., Connel, E. and Wright, D.The Jacobian Conjecture: reduction of degree and formal expansion of the inverse. Bull. Amer. Math. Soc. 7 (1982), 287330.CrossRefGoogle Scholar
[4]Benedetti, R. and Risler, J–J.Real Algebraic and Semialgebraic Sets (Actualités Mathématiques, Paris, 1990).Google Scholar
[5]Białyniki–Birula, A. and Rosenlicht, M.Injective morphisms of real algebraic varieties. Proc. Amer. Math. Soc. 13 (2) (1962), 200203.CrossRefGoogle Scholar
[6]Bochnak, J., Coste, M. and Roy, M–F.Real Algebraic Geometry (Springer–Verlag, Berlin–Heidelberg, 1998).CrossRefGoogle Scholar
[7]Cobo, M., Gutierrez, C. and Llibre, J.On the injectivity of C 1 maps of the real plane. Canad. J. Math. 54 (6) (2002), 11871201.CrossRefGoogle Scholar
[8]Gutierrez, C., Jarque, X., Llibre, J. and Teixeira, A.Global injectivity of C 1 maps of the real plane, inseparable leaves and the Palais–Smale condition. Canad. Math. Bull. 50 (3) (2007), 377389.CrossRefGoogle Scholar
[9]Cynk, S. and Rusek, K.Injective endomorphisms of algebraic and analytic sets. Ann. Polinici Math. 56 (1) (1991), 2935.CrossRefGoogle Scholar
[10]Drużkowisk, L.An effective approach to Keller's Jacobian Conjecture. Math. Ann. 264 (1983), 303313.CrossRefGoogle Scholar
[11]Drużkowisk, L. and Tutaj, H.Differential conditions to verify the Jacobian Conjecture. Ann. Polon. Math. 46 (1992), 8590.Google Scholar
[12]Fernandes, A., Gutierrez, C. and Rabanal, R.On local diffeomorphisms of ${\mathbb R}$n that are injective. Qual. Theory Dyn. Syst. 4 (2) (2004), 255262.CrossRefGoogle Scholar
[13]Fernandes, A., Gutierrez, C. and Rabanal, R.Global asymptotic stability for differentiable vector fields of ${\mathbb R}$2. J. Differential. Equations 206 (2004), 470482.CrossRefGoogle Scholar
[14]Gutierrez, C.A solution to the bidimensional global asymptotic stability conjecture. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (6) (1995), 627671.CrossRefGoogle Scholar
[15]Gutierrez, C. and Maquera, C.Foliations and polynomial diffeomorphisms of ${\mathbb R}$3. Math. Zeitschrift 262 (2009), 613626.CrossRefGoogle Scholar
[16]Gutierrez, C. and Sarmiento, A.Injectivity of C 1 maps ${\mathbb R}$2${\mathbb R}$2 at infinity and planar vector fields. Astérisque 287 (2003), 89102.Google Scholar
[17]Hadamard, J.Sur les transformations ponetuelles. Bull. Soc. Math. France 34 (1906).Google Scholar
[18]Hubbers, E. The Jacobian Conjecture: cubic homogeneous Maps in dimension four. Master's thesis. University of Nijmegen (1994).Google Scholar
[19]Jelonek, Z.The set of points at which a polynomial map is not proper. Ann. Polonici Math. 58 (1993), 259266.CrossRefGoogle Scholar
[20]Jelonek, Z.Testing sets for properness of polynomial mappings. Math. Ann. 315 (1999), 135.CrossRefGoogle Scholar
[21]Jelonek, Z.Geometry of real polynomial mappings. Math. Zeitschrift 239 (2002), 321333.CrossRefGoogle Scholar
[22]Kurdyka, K. and Rusek, K.Surjectivity of certain injective semialgebraic transformations of Rn. Math. Zeitschrift 200 (1988), 141148.CrossRefGoogle Scholar
[23]Maquera, C. and Venato–Santos, J.Foliations and global injectivity in ${\mathbb R}$n. Bull. Braz. Math. Soc. 44 (2) (2013), 273284.CrossRefGoogle Scholar
[24]Nollet, S. and Xavier, F.Global inversion via the Palais-Smale condition. Discrete Contin. Dyn. Syst. 8 (1) (2002), 1728.CrossRefGoogle Scholar
[25]Pinchuck, S.A counterexample to the strong Jacobian conjecture. Math. Zeitschrift 217 (1994), 14.CrossRefGoogle Scholar