Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-19T04:44:19.754Z Has data issue: false hasContentIssue false

Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory

Published online by Cambridge University Press:  28 February 2007

D. BATANI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy
R. DEZULIAN
Affiliation:
Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy
R. REDAELLI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy
R. BENOCCI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy
H. STABILE
Affiliation:
Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy
F. CANOVA
Affiliation:
Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy
T. DESAI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy
G. LUCCHINI
Affiliation:
Dipartimento di Fisica “G. Occhialini,” University of Milano Bicocca, Milan, Italy
E. KROUSKY
Affiliation:
PALS Centre, Academy of Sciences, Prague, Czech Republic
K. MASEK
Affiliation:
PALS Centre, Academy of Sciences, Prague, Czech Republic
M. PFEIFER
Affiliation:
PALS Centre, Academy of Sciences, Prague, Czech Republic
J. SKALA
Affiliation:
PALS Centre, Academy of Sciences, Prague, Czech Republic
R. DUDZAK
Affiliation:
PALS Centre, Academy of Sciences, Prague, Czech Republic
B. RUS
Affiliation:
PALS Centre, Academy of Sciences, Prague, Czech Republic
J. ULLSCHMIED
Affiliation:
PALS Centre, Academy of Sciences, Prague, Czech Republic
V. MALKA
Affiliation:
LOA, Ecole Politechnique, CNRS, Palaiseau, France
J. FAURE
Affiliation:
LOA, Ecole Politechnique, CNRS, Palaiseau, France
M. KOENIG
Affiliation:
LULI, Ecole Politechnique, CNRS, Palaiseau, France
J. LIMPOUCH
Affiliation:
Czech Technical University, Praha, Czech Republic
W. NAZAROV
Affiliation:
University of St. Andrews, Scotland, UK
D. PEPLER
Affiliation:
Central Laser Facility, CCLRC Rutherford Appleton Laboratory, UK
K. NAGAI
Affiliation:
ILE, Osaka University, 2-6 Yamadaoka, Suita City, Osaka 565-0871, Japan
T. NORIMATSU
Affiliation:
ILE, Osaka University, 2-6 Yamadaoka, Suita City, Osaka 565-0871, Japan
H. NISHIMURA
Affiliation:
ILE, Osaka University, 2-6 Yamadaoka, Suita City, Osaka 565-0871, Japan

Abstract

We present a series of experimental results, and their interpretation, connected to various aspects of the hydrodynamics of laser produced plasmas. Experiments were performed using the Prague PALS iodine laser working at 0.44 μm wavelength and irradiances up to a few 1014 W/cm2. By adopting large focal spots and smoothed laser beams, the lateral energy transport and lateral expansion have been avoided. Therefore we could reach a quasi one-dimensional regime for which experimental results can be more easily and properly compared to available analytical models.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ancilotto, F., Chiarotti, G.L., Scandolo, S. & Tosatti, E. (1997). dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Science 275, 12881290.Google Scholar
Atzeni, S. (1986). 2-D Lagrangian studies of symmetry and stability of laser fusion targets. Comp. Phys. Commun. 43, 107124.Google Scholar
Barborini, E., Piseri, P. & Milani, P. (1999). A pulsed microplasma source of high intensity supersonic carbon cluster beams. J. Phys. A 32, L105L109.Google Scholar
Barborini, E., Piseri, P., Podesta, A. & Milani, P. (2000). Cluster beam microfabrication of patterns of three-dimensional nanostructured objects. Appl. Phys. Lett. 77, 10591061.Google Scholar
Batani, D., Balducci, A., Nazarov, W., Löwer, T., Hall, T., Koenig, M., Faral, B., Benuzzi, A. & Temporal, M. (2001). Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves. Phys. Rev. E 63, 046410420.Google Scholar
Batani, D., Balducci, A., Beretta, D., Bernardinello, A., Löwer, T., Koenig, M., Benuzzi, A., Faral, B. & Hall, T. (2000b). Equation of state data for gold in the pressure range <10 TPa. Phys. Rev. B 61, 92879294.Google Scholar
Batani, D., Barbanotti, S., Canova, F., Dezulian, R., Stabile, H., Ravasio, A., Lucchini, G., Ullschmied, J., Krousky, E., Skala, J., Juha, L., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Prag, A., Nishimura, H. & Ochi, Y. (2004a). Laser driven shock experiments at PALS. Czech. J. Phys. 54, 431443.Google Scholar
Batani, D., Bleu, C. & Löwer, T. (2002a). Design, simulation and application of phase plates. Euro. Phys. J. D 19, 231243.Google Scholar
Batani, D., Morelli, A., Tomasini, M., Benuzzi-Mounaix, A., Philippe, F., Koenig, M., Marchet, B., Masclet, I., Rabec, M., Reverdin, Ch., Cauble, R., Celliers, P., Collins, G., Da Silva, L., Hall, T., Moret, M., Sacchi, B., Baclet, P. & B. Cathala, B. (2002b). Equation of state data for iron at pressures beyond 10 Mbar. Phys. Rev. Lett. 88, 235502505.Google Scholar
Batani, D., Nazarov, W., Hall, T., Löwer, T., Koenig, M., Faral, B., Benuzzi-Mounaix, A. & Grandjouan, N. (2000a). Foam-induced smoothing studied through laser-driven shock waves. Phys. Rev. E 62, 85738582.Google Scholar
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Desai, T., Ullschmied, J., Krousky, E., Juha, L., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H. & Ochi, Y. (2003a). Ablation pressure scaling at short laser wavelength. Phys. Rev. E 68, 067403406.Google Scholar
Batani, D., Stabile, H., Tomasini, M., Lucchini, G., Ravasio, A., Koenig, M., Benuzzi-Mounaix, A., Nishimura, H., Ochi, Y., Ullschmied, J., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, Ch., Mocek, T., Präg, A., Hall, T., Milani, P., Barborini, E. & Piseri, P. (2004b). Huguenot data for carbon at megabar pressures. Phys. Rev. Lett. 92, 065503.Google Scholar
Batani, D., Strati, F., Telaro, B., Löwer, T., Hall, T., Benuzzi-Mounaix, A. & Koenig, M. (2003b). Production of high quality shocks for equation of state experiments. Euro. Phys. J D 23, 99107.Google Scholar
Benedetti, L.R., Nguyen, J.H., Caldwell, W.A., Liu, H., Kruger, M. & Jeanloz, R. (1999). Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors? Science 286, 100102.Google Scholar
Benuzzi, A., Koenig, M., Faral, B., Krishnan, J., Pisani, F., Batani, D., Bossi, S., Beretta, D., Hall, T., Ellwi, S., Hüller, S., Honrubia, J. & Grandjouan, N. (1998). Preheating study by reflectivity measurements in laser-driven shocks. Phys. Plasmas 5, 24102420.Google Scholar
Benuzzi-Mounaix, A., Koenig, M., Boudenne, J.M., Hall, T.A., Batani, D., Scianitti, F., Masini, A. & DiSanto, D. (1999). Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments. Phys. Rev. E 60, R2488R2491.Google Scholar
Bundy, F.P. (1963). Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Physics 38, 631643.Google Scholar
Bundy, F.P. (1989). Pressure-temperature phase diagram of elemental carbon. Phys. A 156, 169178.Google Scholar
Bundy, F.P., Strong, H.M. & Wentorf, R.H. (1973). Methods and mechanisms of synthetic diamond growth. In Chemistry and Physics of Carbon (Thrower, P.A., Ed.). New York: Decker.
Caruso, A. & Gratton, R. (1968). Some properties of the plasmas produced by irradiating light solids by laser pulses. Plasma Phys. 10, 867877.Google Scholar
Cavalleri, A., Sokolowski-Tinten, K., von der Linde, D., Spagnolatti, I., Bernasconi, M., Benedek, G., Podestà, A. & Milani, P. (2002). Generation of the low-density liquid phase of carbon by non-thermal melting of fullerene. Europhys. Lett. 57, 281.Google Scholar
Chizhkov, M.N., Karlykhanov, N.G., Lykov, V.A., Shushlebin, A.N., Sokolov, L. & Timakova, M.S. (2005). Computational optimization of indirect-driven targets for ignition on the Iskra-6 laser facility. Laser Part. Beams 23, 261265.Google Scholar
Ciardi, A., Lebedev, S.V., Chittenden, J.P. & Bland, S.N. (2002). Modeling of supersonic jet formation in conical wire array Z-pinches. Laser Part. Beams 20, 255261.Google Scholar
Connerney, J.E.P., Acuna, M.H. & Ness, N.F. (1987). The magnetic field of Uranus. J. Geophys. Rev. 92, 15329.Google Scholar
Desai, T., Dezulian, R. & Batani, D. (2007). Radiation effects on shock propagation in Aluminum target relevant to EOS measurements. Laser Part. Beams 25, 2330.Google Scholar
Desselberger, M., Jones, M.W., Edwards, J., Dunne, M. & Willi. O. (1995). Use of X-ray preheated foam layers to reduce beam structure imprint in laser-driven targets. Phys. Rev. Lett. 74, 29612964.Google Scholar
Dezulian, R., Canova, F., Barbanotti, S., Orsenigo, F., Redaelli, R., Vinci, T., Lucchini, G., Batani, D., Rus, B., Polan, J., Kozlová, M., Stupka, M., Praeg, A.R., Homer, P., Havlicek, T., Soukup, M., Krousky, E., Skala, J., Dudzak, R., Pfeifer, M., Nishimura, H., Nagai, K., Ito, F., Norimatsu, T., Kilpio, A., Shashkov, E., Stuchebrukhov, I., Vovchenko, V., Chernomyrdin, V. & Krasuyk, I. (2006). Huguenot Data of Plastic Foams obtained from Laser-Driven Shocks. Phys. Rev. E 73, 047401404.Google Scholar
Drake, R.P. (2005). Hydrodynamic instabilities in astrophysics and in laboratory high energy–density systems. Plasma Phys. Contr. Fusion 47, B419B440.Google Scholar
Drakin, V.P. & Pavlovskii, M.N. (1966). Concerning the metallic phase of carbon (Ceylon and artificial graphite behavior under very high pressure, examining problem of metallic phase of carbon). JETP Lett 4, 116118.Google Scholar
Dunne, M., Borghesi, M., Iwase, A., Jones, M.W., Taylor, R., Willi, O., Gibson, R., Goldman, S.R., Mack, J. & Watt, R.G. (1995). Evaluation of a foam buffer target design for spatially uniform ablation of laser-irradiated plasmas. Phys. Rev. Lett. 75, 38583861.Google Scholar
Eidmann, K., Bar-Shalom, A., Saemann, A. & Winhart, G. (1998). Measurement of the extreme UV opacity of a hot dense gold plasma. Europhys. Lett. 44, 459464.Google Scholar
Eliezer, S., Ghatak, A. & Hora, H. (1986). Equation of State: Theory and Applications. Cambridge, UK: Cambridge University Press.
Fabbro, R., Faral, B., Virmont, J., Cottet, F., Romain, J.P. & Pépin, H. (1985). Experimental study of ablation pressures and target velocities obtained in 0.26 μm wavelength laser experiments in planar geometry. Phys. Fluids 28, 34143423.Google Scholar
Fabbro, R., Fabre, E., Amiranoff, F., Garban-Labaune, C., Virmont, J., Weinfeld, M. & Max, C.E. (1982). Laser-wavelength dependence of mass-ablation rate and heat-flux inhibition in laser-produced plasmas. Phys. Rev. A 26, 22892292.Google Scholar
Fahy, S. & Louie, S.G. (1987). High-pressure structural and electronic properties of carbon. Phys. Rev. B 36, 33733385.Google Scholar
Fincke, J.R., Lanier, N.E., Batha, S.H., Hueckstaedt, R.M., Magelssen, G.R., Rothman, S.D., Parker, K.W. & Horsfield, C. (2005). Effect of convergence on growth of the Richtmyer-Meshkov instability. Laser Part. Beams 23, 2125.Google Scholar
Fleury, X., Bouquet, S., Stehle, C., Koenig, M., Batani, D., Benuzzi-Mounaix, A., Chieze, J.P., N.Grandjouan, Grenier, J., Hall, T., Enry, E., Lafon, J.P., Leygnac, S., Malka, V., Marchet, B., Merdij, H., Michaut, C., &Thais, F. (2002). A laser experiment for studying radiative shocks in astrophysics. Laser Part. Beams 20, 263268.Google Scholar
Garban-Labaune, C., Fabre, E., Max, C., Amiranoff, F., Fabbro, R., Virmont, J. & Mead, W.C. (1985). Experimental results and theoretical analysis of the effect of wavelength on absorption and hot-electron generation in laser-plasma interaction. Phys. Fluids 28, 25802590.Google Scholar
Grumbach, M.P. & Martin, R.M. (1996). Phase diagram of carbon at high pressures and temperatures. Phys. Rev. B 54, 1573015741.Google Scholar
Guillot, T. (1999). Interiors of giant planets inside and outside the solar system. Science 286, 7277.Google Scholar
Gupta, Y.M. & Sharma, S.M. (1997). Shocking matter to extreme conditions. Science 277, 909910.Google Scholar
Gus'Kov, SY. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255260.Google Scholar
Gus'Kov, S.Y., Gromov, A.I., Merkul'ev, Yu.A., Rozanov, V.B., Nikishin, V., Tishkin, V.F., Zmitrenko, N.V., Gavrilov, V.V., Gol'tsov, A.A., Kondrashov, V.N., Kovalsky, N.V., Pergament, M.I., Garanin, S.G., Kirillov, G.A., Sukharev, S.A., Caruso, A. & Strangio, C. (2000). Nonequilibrium laser-produced plasma of volume-structured media and ICF applications. Laser Part. Beams 18, 110.Google Scholar
Gust, W.H. (1980). Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon. Phys. Rev. B 22, 47444756.Google Scholar
Hall, T., Batani, D., Nazarov, W., Koenig, M. & Benuzzi, A. (2002). Recent advances in laser–plasma experiments using foams. Laser Part. Beams 20, 303316.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma interaction. Laser Part. Beams 24, 455463.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas 8, 24952501.Google Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.Google Scholar
Key, M.H., Rumsby, P.T., Evans, R.G., Lewis, C.L.S., Ward, J.M. & Cooke, R.L. (1980). Study of Ablatively Imploded Spherical Shells. Phys. Rev. Lett. 45, 18011804.Google Scholar
Key, M.H., Toner, W.T., Goldsack, T.J., Kilkenny, J.D., Veats, S.A., Cunningham, P.F. & Lewis, C.L.S. (1983). A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 μm. Phys. Fluids 26, 20112026.Google Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.Google Scholar
Koenig, M., Benuzzi, A., Faral, B., Batani, D., Muller, L., Torsiello, F., Hall, T., Grandjouan, N. & Nazarov, W. (2000). EOS data for CH foams using smoothed laser beams. Astro. J. 127, 385.Google Scholar
Koenig, M., Benuzzi, A., Philippe, F., Batani, D., Hall, T., Grandjouan, N. & Nazarov, W. (1999a). Equation of state data experiments for plastic foams using smoothed laser beams. Phys. Plasmas 6, 32963301.Google Scholar
Koenig, M., Benuzzi-Mounaix, A., Batani, D., Hall, T. & Nazarov, W. (2005b). Shock velocity and temperature measurements of plastic foams compressed by smoothed laser beams. Phys. Plasmas 12, 012706711.Google Scholar
Koenig, M., Benuzzi-Mounaix, A., Philippe, F., Faral, B., Batani, D., Hall, T.A., Grandjouan, N., Nazarov, W., Chieze, J.P. & Teyssier, R. (1999b). Laser driven shock wave acceleration experiments using plastic foams. Appl. Phys. Lett. 75, 30263028.Google Scholar
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Benuzzi, A., Bossi, S., Rémond, C., Perrine, J.P., Temporal, M. & Atzeni, S. (1995). Relative consistency of equations of state by laser driven shock waves. Phys. Rev. Lett. 74, 22602263.Google Scholar
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Benuzzi, A. & Bossi, S. (1994). Optical smoothing techniques for shock wave generation in laser-produced plasmas. Phys. Rev. E 50, R3314R3317.Google Scholar
Koenig, M., Fabre, E., Malka, V., Michard, A., Hammerling, P., Batani, D., Boudenne, J.M., Garconnet, J.P. & Fews, P. (1992). Recent results on implosions directly driven at lambda = 0.26-m laser wavelength. Laser Part. Beams 10, 573.Google Scholar
Koenig, M., Vinci, T., Benuzzi-Monnaix, A., Lepape, S., Ozaki, N., Bouquet, S., Boireau, L., Leygnac, S., Michaut, C., Stehle, C., Chieze, J.P., Batani, D., Hall, T., Tanaka, K. & Yoshida, M. (2005a). Radiative shock experiments at LULI. Astrophys. Space Sci. 298, 6974.Google Scholar
Koenig, M., Vinci, T., Benuzzi-Mounaix, A., Ozaki, N., Ravasio, A., Boireau, L., Michaut, C., Bouquet, S., Atzeni, S., Schiavi, A., Peyrusse, O., Batani, D., Drake, R.P. & Reighard, A.B. (2006). Radiative shocks: An opportunity to study laboratory astrophysics. Phys. Plasmas 13, 056504.Google Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.Google Scholar
Lebo, I.G., Yu, A.M., Tishkin, V.F. & Zvorykin, V.D. (1999). Analysis and 2D numerical modeling of burn through of metallic foil experiments using power KrF and Nd lasers Laser Part. Beams 17, 753758.Google Scholar
Limpouch, J., Demchenko, N.N., Gus'Kov, S.Y., Gromov, A.I., Kalal, M., Kasperczuk, A., Kondrashov, V.N., Krousky, E., Masek, K., Pfeifer, M., Pisarczyk, P., Pisarczyk, T., Rohlena, K., Rozanov, V.B., Sinor, M. & Ullschmied, J. (2005). Laser interactions with low-density plastic foams. Laser Part. Beams 23, 321325.Google Scholar
Limpouch, J., Demchenko, N.N., Gus'Kov, S.Y., Kálal, M., Kasperczuk, A., Kondrashov, V.N., Krouski, E., Masek, K., Pisarczyk, P., Pisarczyk, T. & Rozanov, V.B. (2004). Laser interactions with plastic foam—metallic foil layered targets. Plasma Phys. Contr. Fusion 46, 18311841.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Malka, V., Faure, F., Huller, S., Tikhonchuk, V.T., Weber, S. & Amiranoff, F. (2003). Enhanced spatiotemporal laser-beam smoothing in gas-jet plasmas. Phys. Rev. Lett. 90, 075002.Google Scholar
Mao, H.K. & Bell, P.M. (1978). High-pressure physics: Sustained static generation of 1.36 to 1.72 Megabars. Science 200, 11451147.Google Scholar
Mao, H.K. & Bell, P.M. (1979). Observations of hydrogen at room temperature (25°C) and high pressure (to 500 Kilobars). Science 203, 10041006.Google Scholar
Mao, H.K. & Hemley, R.J. (1991). Optical transitions in diamond at ultrahigh pressures. Nature 351, 721724.Google Scholar
Marsh, S.P. (1980). LASL Shock Huguenot Data, pp. 2851. Berkeley, CA: University of California, Berkeley, 2851.
Meyer, B. & Thiell, G. (1984). Experimental scaling laws for ablation parameters in plane target–laser interaction with 1.06 μm and 0.35 μm laser wavelengths. Phys. Fluids 27, 302311.Google Scholar
Mora, P. (1982). Theoretical model of absorption of laser light by a plasma. Phys. Fluids 25, 10511056.Google Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.Google Scholar
Nagai, K., Cho, B.-R., Hashishin, Y., Norimatsu, T. & Yamanaka, T. (2002a). Microstructures of ultralow-density foam plastics obtained by altering the coagulant alcohol. Jp. J. Appl. Phys. 41, L431L433.Google Scholar
Nagai, K., Norimatsu, T., Yamanaka, T., Nishibe, T., Ozaki, N., Takamatsu, K., Ono, T., Nakano, M. & Tanaka, K.A. (2006b). Single molecular membrane glue technique for laser driven shock experiments. Jp. J. Appl. Phys. 41, L1184L1186.Google Scholar
Nagai, K., Takayoshi, N. & Yasukazu, I. (2004). Control of micro- and nano-structure in ultra low-density hydrocarbon foam. Fusion Sci. Technol. 45, 7983.Google Scholar
Nellis, W.J., Hamilton, D.C., Holmes, N.C., Radousky, H.B., Ree, F.H., Mitchell, A.C. & Nicol, M. (2001a). Nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure. Science 240, 779781.Google Scholar
Nellis, W.J., Mitchell, A.C. & McMahan, A.K. (2001b). Carbon at pressures in the range 0.1–1 TPa (10 Mbar). J. Appl. Phys. 90, 696698.Google Scholar
Ness, N.F., Acuna, M.H., Behannon, K.W., Burlaga, L.F., Connerney, J.E.P. & Lepping, R.P. (1986). Magnetic fields at Uranus. Science 233, 8589.Google Scholar
Nishimura, H., Shiraga, H., Azechi, H., Miyanaga, N., Nakai, M., Izumi, N., Nishikino, M., Heya, M., Fujita, K., Ochi, Y., Shigemori, K., Ohnishi, N., Murakami, M., Nishihara, K., Ishizakia, R., Takabe, H., Nagai, K., Norimatsu, T., Nakatsuka, M., Yamanaka, T., Nakai, S., Yamanakab, C. & Mima, K. (2000). Indirect-direct hybrid target experiments with the GEKKO XII laser. Nucl. Fusion 40, 547556.Google Scholar
Okihara, S., Esirkepov, T.Zh., Nagai, K., Shimizu, S., Sato, F., Hashida, M., Iida, T., Nishihara, K., Norimatsu, T., Izawa, Y. & Sakabe, S. (2004). Ion generation in a low-density plastic foam by interaction with intense femtosecond laser pulses. Phys. Rev. E 69, 026401404.Google Scholar
Pant, H.C., Shukla, M., Pandey, H.D., Kashyap, Y., Sarkar, P.S., Sinha, A., Senecham, V.K. & Godwal, B.K. (2006). Enhancement of laser induced shock pressure in multilayer solid targets. Laser Part. Beams 24, 169174.Google Scholar
Pavlovskii, M.N. (1971). Shock compression of diamond. Soviet Phys. Solid State 13, 741.Google Scholar
Piriz, A.R., Cela, J.J.L., Serena Moreno, M.C., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275282.Google Scholar
Piseri, P., Podestà, A., Barborini, E. & Milani, P. (2001). Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions. Rev. Sci. Instr. 72, 22612267.Google Scholar
Ramis, R. & Meyer-ter-Vehn, J. (1992). MULTI2D-A Computer Code for Two-Dimensional Radiation Hydrodynamics. Munchen, Germany: Max-Planck-Institut für Quantenoptik.
Ross, M. (1981). The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435436.Google Scholar
Ross, M. (1985). Matter under extreme conditions of temperature and pressure. Rtp. Prog. Phys. 48, 152.Google Scholar
Ruoff, A.L. & Luo, H. (1991). Pressure strengthening: A possible route to obtaining 9 Mbar and metallic diamonds. J. Appl. Phys. 70, 2066.Google Scholar
Saumon, D., Chabrier, G. & Vanhorn, H.M. (1995). An equation of state for low-mass stars and giant planets. Astrophys. J. 99, 713741.Google Scholar
Scandolo, S., Chiarotti, G.L. & Tosatti, E. (1996). SC4: A metallic phase of carbon at terapascal pressures. Phys. Rev. B 53, 50515054.Google Scholar
Sekine, T. (1999). Sixfold-coordinated carbon as a post diamond phase. Appl. Phys. Lett. 74, 350352.Google Scholar
SESAME. (1983). Report on the Los Alamos equation-of-state library. Report No. LALP-83-4. Los Alamos, NM: Los Alamos National Laboratory.
Stevenson, R.M., Norman, M.J., Bett, T.H., Pepler, D.A., Danson, C.N. & Ross, I.N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett. 19, 363.Google Scholar
Teyssier, R., Ryutov, D. & Remington, B. (2000). Accelerating shock waves in a laser-produced density gradient, Astrophys. J. 127, 503508.Google Scholar
Vinci, T., Koenig, M., Benuzzi-Mounaix, A., Boireau, L., Bouquet, S., Leygnac, S., Michaut, C., Stehle, C., Peyrusse, O. & Batani, D. (2005). Density and temperature measurements on laser generated radiative shocks. Astrophys. Space Sci. 298, 333336.Google Scholar
Winhart, G., Eidmann, H., Iglesias, C.A. & Bar-Shalom, A. (1996). Measurements of extreme uv opacities in hot dense Al, Fe, and Ho. Phys. Rev. E 53, R1332R1335.Google Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1967). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.