Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T05:23:17.822Z Has data issue: false hasContentIssue false

Radio Emission from SN 1987A

Published online by Cambridge University Press:  12 April 2016

L. Staveley-Smith
Affiliation:
Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australia
R. N. Manchester
Affiliation:
Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australia
A. K. Tzioumis
Affiliation:
Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australia
J. E. Reynolds
Affiliation:
Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australia
D. S. Briggs
Affiliation:
National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the first six years of radio observations of Supernova 1987A. The evolution can be divided into two phases: the initial radio outburst which lasted a few weeks, and the period from mid-1990 to the present, during which the radio emission has steadily increased. Both phases can be explained by a small fraction (0.1-0.5%) of the post-shock thermal energy being converted to energy in relativistic particles and magnetic fields, which give rise to synchrotron radiation. The optical depths, densities and density profiles for the pre-shocked circumstellar material are somewhat different for the two phases, but consistent with models of the density structure of the material within the circumstellar ring. New high-resolution radio observations show that the SN shock front is already at about three-quarters of the radius of the circumstellar ring, and that there exists a bright equatorial component of emission aligned with this ring which is probably due to a polar density gradient in the ‘hourglass’ structure.

Type
Supernovae and Circumstellar Matter
Copyright
Copyright © Cambridge University Press 1996

References

Allen, R. J., Goss, W. M., Ekers, R. D. & de Bruyn, A. G. (1976). Astr. Astrophys., 48, 253261.Google Scholar
Arnett, W. D. (1988). ApJ, 331, 377387.Google Scholar
Ball, L. & Kirk, J. G. (1992). ApJ, 396, L39L42.Google Scholar
Bartel, N., Rogers, A. E. E., Shapiro, I. I., Gorenstein, M. V., Gwinn, C. R., Marcaide, J. M. & Weiler, K. W. (1985). Nature, 318, 2530.Google Scholar
Castor, J., McCray, R. & Weaver, R. (1975). ApJ, 318, L107L110.Google Scholar
Chevalier, R. A. (1982a). ApJ, 318, 302310.Google Scholar
Chevalier, R. A. (1982b). ApJ, 318, 790797.Google Scholar
Chevalier, R. A. (1992). Nature, 318, 617618.Google Scholar
Chevalier, R. A. & Fransson, C. (1987). Nature, 318, 4445.Google Scholar
Crotts, A. P. S. & Heathcote, S. R. (1991). Nature, 318, 683685.Google Scholar
Dyson, J. E. & de Vries, J. (1972). A&A, 318, 223232.Google Scholar
Falle, S. A. E. G. (1975). A&A, 318, 323336.Google Scholar
Ginzberg, V. L. & Syrovatskii, S. I. A. (1965). Ann. Rev. Astr. Astrophys., 3, 297350.Google Scholar
Gottesman, S. T., Broderick, J. J., Brown, R. L., Balick, B. & Palmer, P. (1972). ApJ, 174, 383388.Google Scholar
Hanuschik, R. W. & Dachs, J. (1987). A&A, 318, L29L30.Google Scholar
Jakobsen, , et al. (1991). ApJ, 318, L63L66.Google Scholar
Jauncey, , et al. (1988). Nature, 318, 412415.Google Scholar
Kirk, J. G & Wassmann, M. (1992). A&A, 318, 167176.Google Scholar
Pacholczyk, A. G. (1970). Radio Astrophysics, 171. San Francisco: Freeman.Google Scholar
Rupen, M. P., van Gorkom, J. H., Knapp, G. R., Gunn, J. E. & Schneider, D. P. (1987). Astr. J., 318, 6170.Google Scholar
Ryder, S., Staveley-Smith, L., Dopita, M., Petre, R., Colbert, E., Malin, D. & Schlegel, E. (1993). ApJ, 416, 167 Google Scholar
Staveley-Smith, L., Manchester, R. N., Kesteven, M. J., Campbell-Wilson, D., Crawford, D. F., Turtle, A. J., Reynolds, J. E., Tzioumis, A. K., Killeen, N. E. B. K. & Jauncey, D. L. (1992). Nature, 318, 147149.Google Scholar
Staveley-Smith, L., Briggs, D. S., Rowe, A. C. R., Manchester, R. N., Reynolds, J. E., Tzioumis, A. K. & Kesteven, M. J. (1993). Nature, 366, 166.Google Scholar
Storey, M. C. & Manchester, R. N. (1987). Nature, 318, 421423.Google Scholar
Turtle, A. J., Campbell-Wilson, D., Bunton, J. D., Jauncey, D. L., Kesteven, M. J., Manchester, R. N., Norris, R. P., Storey, M. C. & Reynolds, J. E. (1987). Nature, 318, 3840.Google Scholar
Turtle, A. J., Campbell-Wilson, D., Manchester, R. N., Staveley-Smith, L. & Kesteven, M. J. (1990). IAU Circular 5086.Google Scholar
Wang, L. & Mazzali, P. A. (1992). Nature, 318, 5861.Google Scholar
Weiler, K. W., Panagia, N., Sramek, R. A., van der Hülst, J. M., Roberts, M. S. & Nguyen, L. (1989). ApJ, 318, 421428.Google Scholar
White, G. L. & Malin, D. (1987). ESO Workshop on SN 1987A, 11-18. Garching: ESO.Google Scholar