Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T14:04:41.268Z Has data issue: false hasContentIssue false

14C Dating of the Early Natufian at El-Wad Terrace, Mount Carmel, Israel: Methodology and Materials Characterization

Published online by Cambridge University Press:  18 July 2016

Eileen Eckmeier*
Affiliation:
Radiocarbon Dating and Cosmogenic Isotopes Laboratory, Kimmel Center of Archaeological Science, Weizmann Institute of Science, Rehovot 76100, Israel University of Bonn, INRES-Soil Science, Nussallee 13, Bonn 53115, Germany
Reuven Yeshurun
Affiliation:
Zinman Institute of Archaeology, University of Haifa, Haifa 31905, Israel
Mina Weinstein-Evron
Affiliation:
Zinman Institute of Archaeology, University of Haifa, Haifa 31905, Israel
Eugenia Mintz
Affiliation:
Radiocarbon Dating and Cosmogenic Isotopes Laboratory, Kimmel Center of Archaeological Science, Weizmann Institute of Science, Rehovot 76100, Israel
Elisabetta Boaretto
Affiliation:
Radiocarbon Dating and Cosmogenic Isotopes Laboratory, Kimmel Center of Archaeological Science, Weizmann Institute of Science, Rehovot 76100, Israel
*
Corresponding author. Email: eileen.eckmeier@uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Natufian (15–11.5 kyr BP) sites in the southern Levant are characterized by a lack of macrobotanical remains, including charcoal, and poor preservation of bone collagen. As a result, only about 30 reliable radiocarbon dates are available for building a chronology of the Natufian period. Here, we present new 14C data from the Natufian site of el-Wad terrace that fall in the range of the Early Natufian period. Using Fourier transform infrared (FTIR) analysis, we investigated the environmental factors that influenced the preservation of material for 14C dating of the site, and we tested a modified pretreatment method for poorly preserved charcoal samples. The normal pretreatment protocol for 14C samples (W-ABA) removed more charcoal material than the modified method, which omits the first acid treatment (W-BA). This first acid step seems to enhance the extraction of humic substances during the subsequent base step. We found that the poor preservation of charcoal could be attributed to the presence of calcite, and therefore an alkaline pH of sediments. The most important factor determining bone collagen preservation may have been the hydrological setting, i.e. fluctuating water levels due to oversaturation of the dense sediments after rainfall.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Ascough, PL, Bird, MI, Francis, SM, Lebl, T. 2010. Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids. Journal of Archaeological Science 38(1):6978.CrossRefGoogle Scholar
Baldock, JA, Smernik, RJ. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Organic Geochemistry 33(9):1093–109.CrossRefGoogle Scholar
Balter, M. 2010. The tangled roots of agriculture. Science 327(5964):404–6.CrossRefGoogle ScholarPubMed
Bar-Oz, G, Yeshurun, R, Weinstein-Evron, M. In press. Specialized hunting of gazelle in the Natufian: cultural cause or climatic effect? In: Bar-Yosef, O, Valla, FR, editors. The Natufian Culture in the Levant II. Ann Arbor: International Monographs in Prehistory.Google Scholar
Bar-Yosef, O. 1998. The Natufian culture in the Levant, threshold to the origins of agriculture. Evolutionary Anthropology Issues News and Reviews 6:159–77.3.0.CO;2-7>CrossRefGoogle Scholar
Bar-Yosef, O. 2002. Natufian: a complex society of foragers. In: Fitzhugh, B, Habu, J, editors. Beyond Foraging and Collecting: Evolutionary Change in Hunter-Gatherer Settlement Systems. New York: Kluwer Academic. p 91147.CrossRefGoogle Scholar
Bar-Yosef, O, Belfer-Cohen, A. 1989. The origins of sedentism and farming communities in the Levant. Journal of World Prehistory 3(4):447–98.CrossRefGoogle Scholar
Berna, F, Matthews, A, Weiner, S. 2004. Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science 31(7):867–82.CrossRefGoogle Scholar
Blockley, SPE, Blaauw, M, Bronk Ramsey, C, van der Plicht, J. 2007. Building and testing age models for radiocarbon dates in Lateglacial and Early Holocene sediments. Quaternary Science Reviews 26(15–16):1915–26.CrossRefGoogle Scholar
Bocherens, H, Tresset, A, Wiedemann, F, Giligny, F, Lafage, F, Lanchon, Y, Mariotti, A. 1997. Diagenetic evolution of mammal bones in two French Neolithic sites. Bulletin de la Société Géologique de France 168:555–64.Google Scholar
Braadbaart, F, Poole, I, Brussel, AA. 2009. Preservation potential of charcoal in alkaline environments: an experimental approach and implications for the archaeological record. Journal of Archaeological Science 36(8):1672–9.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Clough, A, Skjemstad, JO. 2000. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate. Australian Journal of Soil Research 38(5):1005–16.Google Scholar
Cohen-Ofri, I, Weiner, L, Boaretto, E, Mintz, G, Weiner, S. 2006. Modern and fossil charcoal: aspects of structure and diagenesis. Journal of Archaeological Science 33(3):428–39.CrossRefGoogle Scholar
Collins, MJ, Nielsen-Marsh, CM, Hiller, J, Smith, CI, Roberts, JP, Prigodich, RV, Wess, TJ, Csapò, J, Millard, AR, Turner-Walker, G. 2002. The survival of organic matter in bone: a review. Archaeometry 44(3):383–94.CrossRefGoogle Scholar
Czimczik, CI, Masiello, CA. 2007. Controls on black carbon storage in soils. Global Biogeochemical Cycles 21: GB3005, doi: 10.1029/2006GB002798.CrossRefGoogle Scholar
Czimczik, CI, Schmidt, MWI, Schulze, ED. 2005. Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests. European Journal of Soil Science 56(3):417–28.CrossRefGoogle Scholar
Deckers, K, Riehl, S, Jenkins, E, Rosen, A, Dodonov, A, Simakova, AN, Conard, NJ. 2009. Vegetation development and human occupation in the Damascus region of southwestern Syria from the Late Pleistocene to Holocene. Vegetation History and Archaeobotany 18(4):329–40.CrossRefGoogle Scholar
Denef, K, Six, J, Paustian, K, Merckx, R. 2001. Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry-wet cycles. Soil Biology and Biochemistry 33(15):2145–53.CrossRefGoogle Scholar
Garrod, DAE, Bate, DMA. 1937. The Stone Age of Mount Carmel: Excavations at the Wady el-Mughara, Volume I. Oxford: Clarendon Press.Google Scholar
Hamer, U, Marschner, B, Brodowski, S, Amelung, W. 2004. Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry 35(7):823–30.CrossRefGoogle Scholar
Lev-Yadun, S, Weinstein-Evron, M. 1994. Late Epipalaeolithic wood remains from el-Wad Cave, Mount Carmel, Israel. New Phytologist 127(2):391–6.CrossRefGoogle ScholarPubMed
Nielsen-Marsh, CM, Hedges, REM. 2000. Patterns of diagenesis in bone I: the effects of site environments. Journal of Archaeological Science 27(12):1139–50.CrossRefGoogle Scholar
Portillo, M, Rosen, AM, Weinstein-Evron, M. 2010. Natufian plant uses at el-Wad terrace (Mount Carmel, Israel): the phytolith evidence. Eurasian Prehistory 7(1):99112.Google Scholar
Rebollo, NR, Cohen-Ofri, I, Popovitz-Biro, R, Bar-Yosef, O, Meignen, L, Goldberg, P, Weiner, S, Boaretto, E. 2008. Structural characterization of charcoal exposed to high and low pH: implications for 14C sample preparation and charcoal preservation. Radiocarbon 50(2):289307.CrossRefGoogle Scholar
Reiche, I, Favre-Quattropani, L, Vignaud, C, Bocherens, H, Charlet, L, Menu, M. 2003. A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Measurement Science and Technology 14:1608–19.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Rosen, AM. 2004. Phytolith evidence for plant use at Mallaha/Eynan. Les fouilles a Mallaha en 2000 et 2001: 3ème rapport préliminaire. Journal of the Israel Prehistoric Society 34:189201.Google Scholar
Rosen, AM. 2007. Phytolith remains from Final Natufian contexts at Mallaha/Eynan. Journal of the Israel Prehistoric Society 37:340–55.Google Scholar
Valla, FR, Bar-Yosef, O, Smith, P, Tchernov, E, Desse, J. 1986. Un nouveau sondage sur la terrasse d'El Ouad, Israel. Paléorient 12:2138.CrossRefGoogle Scholar
Weiner, S, Bar-Yosef, O. 1990. States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17(2):187–96.CrossRefGoogle Scholar
Weinstein-Evron, M. 1991. New radiocarbon dates for the Early Natufian of el-Wad Cave, Mt. Carmel, Israel. Paleorient 17:95–8.CrossRefGoogle Scholar
Weinstein-Evron, M. 1994. Biases in archaeological pollen assemblages: case studies from Israel. AASP Contributions Series 29:193205.Google Scholar
Weinstein-Evron, M. 1998. Early Natufian el-Wad Revisited. Liège: Études et Recherches Archéologiques de l'Université de Liège (ERAUL) 77.Google Scholar
Weinstein-Evron, M. 2009. Archaeology in the Archives: Unveiling the Natufian Culture of Mount Carmel. ASPR, American School of Prehistoric Research Monograph Series. Boston: Brill.Google Scholar
Weinstein-Evron, M, Kaufman, D, Bachrach, N, Bar-Oz, G, Bar-Yosef Mayer, D, Chaim, S, Druck, D, Groman-Yaroslavski, I, Hershkovitz, I, Liber, N, Rosenberg, D, Tsatskin, A, Weissbrod, L. 2007. After 70 years: new excavations at the el-Wad terrace, Mount Carmel, Israel. Journal of the Israel Prehistoric Society 37:37134.Google Scholar
Weinstein-Evron, M, Kaufman, D, Yeshurun, R. In press. Spatial organization of Natufian el-Wad through time: combining the results of past and present excavations. In: Bar-Yosef, O, Valla, FR, editors. The Natufian Culture in the Levant II. Ann Arbor: International Monographs in Prehistory.Google Scholar
Weinstein-Evron, M, Yeshurun, R, Kaufman, D, Eckmeier, E, Boaretto, E. 2012. New 14C dates for the Early Natufian of el-Wad terrace, Mount Carmel, Israel. Radiocarbon, these proceedings.CrossRefGoogle Scholar
Weissbrod, L, Kaufman, D, Nadel, D, Yeshurun, R, Weinstein-Evron, M. In press. Commensalism: Was it truly a Natufian phenomenon? Recent contributions from ethnoarchaeology and ecology. In: Bar-Yosef, O, Valla, FR, editors. The Natufian Culture in the Levant II. Ann Arbor: International Monographs in Prehistory.Google Scholar
Yeshurun, R, Bar-Oz, G, Kaufman, D, Weinstein-Evron, M. In press. Domestic refuse maintenance in the Natufian: faunal evidence from el-Wad terrace, Mount Carmel. In: Bar-Yosef, O, Valla, FR, editors. The Natufian Culture in the Levant II. Ann Arbor: International Monographs in Prehistory.Google Scholar
Yizhaq, M, Mintz, G, Cohen, I, Khalaily, H, Weiner, S, Boaretto, E. 2005. Quality controlled radiocarbon dating of bones and charcoal from the early Pre-Pottery Neolithic B (PPNB) of Motza (Israel). Radiocarbon 47(2):193206.CrossRefGoogle Scholar