Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T21:37:43.531Z Has data issue: false hasContentIssue false

My image of the retina

Published online by Cambridge University Press:  17 March 2009

Maarten A. Bouman
Affiliation:
Department of Physological and Medical Physics, Physics Laboratories, Utrecht University, The Netherlands

Extract

The initial act for visual perception is the absorption of light in the photo-pigment of the receptor end-organs. Since both light and the nervous message have a quantal structure, any theory of visual information processing should in principle be a digital processing theory. And not only in principle, since we know for certain that in many situations the number of quanta is rather restricted, so that an over-all thermodynamic theory cannot but fail to adequately describe visual facts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barlow, H. B. (1965). Optic nerve impulses and Weber's law. In Sensory Receptors. Cold Spring Harb. Symp. Quant. Biol. 30, 539.CrossRefGoogle ScholarPubMed
Von Békésy, G. (1930). Über das Fechnersche Gesetz und seine Bedeutung für die Theorie der akustischen Beobachtungsfehler und die Theorie des Horens. Annl Phys. 7, 329.CrossRefGoogle Scholar
Bloch, A. M. (1885). Expériences sur la vision. C. r. Séanc. Soc. Biol. 2, 493.Google Scholar
Bouman, M. A. (1950). Quanta explanation of vision. Doc. Ophthalm. 4, 23.CrossRefGoogle Scholar
Bouman, M. A. (1952 a). Mechanisms in peripheral dark adaptation. J. opt. Soc. Am. 42, 941.CrossRefGoogle ScholarPubMed
Bouman, M. A. (1952 b). Peripheral contrast thresholds for various and different wave-lengths for adapting field and test-stimulus. J. opt. Soc. Am. 42, 820.CrossRefGoogle Scholar
Bouman, M. A. (1953) Visual thresholds for line-shaped targets. J. opt. Soc. Am. 43, 209.CrossRefGoogle ScholarPubMed
Bouman, M. A. (1955 a). On foveal and peripheral interaction in binocular vision. Optica Acta 1 177.CrossRefGoogle Scholar
Bouman, M. A. (1955 b). Absolute threshold conditions for visual perception J. opt. Soc. Am. 45, 36.CrossRefGoogle ScholarPubMed
Bouman, M. A.History and Present Status of Quantum Theory in Vision in Sensory Communication, p. 377. Wiley and Sons, 1961. (Symposium proceedings.)Google Scholar
Bouman, M. A. (1960). Sensory Phenomena in Physicomathematical Aspects of Biology. New York: Academic Press.Google Scholar
Bouman, M. A. (1963). Efficiency and economy in impulse transmission in the visual system in Proc. Int. Congr. Psych., Washington, 1963. Acta Psychol. 23, 239 (1964).Google Scholar
Bouman, M. A. & Ampt, C. G. F. (1965). Fluctuation theory in vision and its mechanistic model in Performance of the eye at low luminances Excerpta med. Int. Congr. Series, no. 125.Google Scholar
Bouman, M. A. & van den Brink, G. (1952). On the integrate capacity in time and space of the human peripheral retina. J. opt. Soc. Am. 42, 617.CrossRefGoogle ScholarPubMed
Bouman, M. A. & van den Brink, G.Absolute thresholds for moving point sources. J. opt. Soc. Am. 43, 895.CrossRefGoogle Scholar
Bouman, M. A. & Doesschate, J. Ten (1953). Nervous and photochemical components in visual adaptation. Ophthalmologica 126, 222.CrossRefGoogle ScholarPubMed
Bouman, M. A. & ten Doesschate, J. (1962). The mechanisms of dark- adaptation. Vision Res. 1, 386.CrossRefGoogle Scholar
Bouman, M. A. & Velden, H. A.Van Der (1948). The two quanta hypothesis as a general explanation for the behavior of threshold values and visual acuity for the several receptors of the human eye. J. opt. Soc. Am. 38, 570.CrossRefGoogle ScholarPubMed
Bouman, M. A. & Walraven, P. L. (1957 a). A study of normal and defective colour vision. N.P.L. Teddington Symposium, no. 8.Google Scholar
Bouman, M. A. & Walraven, P. L. (1957b). Some color naming experiments for red and green monochromatic lights. J. opt. Soc. Am. 47, 834.CrossRefGoogle ScholarPubMed
Bouman, M. A. & Walraven, P. L. (1962). Quantum theory of color discrimination of dichromates. Vision Res. 2, 177.CrossRefGoogle Scholar
Bremer, F. (1967). Interactions binoculaire dans l'aire visuelle corticale et le corps genouillé latéral du chat. Archs. Int. Physiol. Bioch. 75, 835.Google Scholar
van den Brink, G. (1963). Subjective brightness during dark-adaptation. Vision Res. 2, 495.CrossRefGoogle Scholar
van den Brink, G. (1965). A note on visual facilitation. Vison Res. 5, 217.CrossRefGoogle ScholarPubMed
van den Brink, G. & Bouman, M. A. (1954). Variation of integrative actions in time and space: an adaptational phenomenon. J. opt. Soc. Am. 44, 616.CrossRefGoogle Scholar
van den Brink, G. & Bouman, M. A. (1957). Visual contrast thresholds for moving point sources. J. opt. Soc. Am. 47, 612.CrossRefGoogle ScholarPubMed
van den Brink, G. & Bouman, M. A. (1963). Quantum coincidence requirements during dark-adaptation. Vision Res. 3, 479.CrossRefGoogle Scholar
Burckhardt, D. A. (1968). Cone action spectra: evidence from the goldfish electroretinogram. Vision Res. 8, 839.CrossRefGoogle Scholar
Cone, R. A. (1964). Early receptor potential of the vertebrate retina. Nature, Lond. 204, 736.CrossRefGoogle ScholarPubMed
Cawford, B. H. (1947). Visual adaptation in relation to brief conditioning stimuli. Proc. R. Soc. B 134, 283.Google Scholar
De valois, R. L., Isnel, A. & Jacobs, G. H. (1966). Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56, 966.CrossRefGoogle ScholarPubMed
Dodge, F. A., Knight, B. W. & Tayoda, J. (1968). Voltage noise in limulus visual cells. Science, N. Y. 160, 88.CrossRefGoogle ScholarPubMed
Easter, S. S. (1968). Excitation in the goldfish retina: evidence for a nonlinear intensity code. J. Physiol., Lond. 195, 253.CrossRefGoogle ScholarPubMed
Bouman, M. A. (1963). Efficiency and economy in impulse transmission in the visual system in Proc. Int. Congr. Psych., Washington, 1963. Acta Psychol. 23, 239 (1964).Google Scholar
Bouman, M. A. & Ampt, C. G. F. (1965). Fluctuation theory in vision and its mechanistic model in Performance of the eye at low luminances Excerpta med. Int. Congr. Series, no. 125.Google Scholar
Bouman, M. A. & van den Brink, G. (1952). On the integrate capacity in time and space of the human peripheral retina. J. opt. Soc. Am. 43, 617.CrossRefGoogle Scholar
Bouman, M. A. & van den Brink, G.Absolute thresholds for moving point sources. J. opt. Soc. Am. 43, 895.CrossRefGoogle Scholar
Bouman, M. A. & ten Doesschate, J. (1953). Nervous and photochemical components in visual adaptation. Ophthalmologica 126, 222.CrossRefGoogle ScholarPubMed
Bouman, M. A. & Doesschate, J. Ten (1962). The mechanisms of dark-adaptation. Vision Res. 1, 386.CrossRefGoogle Scholar
Bouman, M. A. & van der Velden, H. A. (1948). The two quanta hypothesis as a general explanation for the behavior of threshold values and visual acuity for the several receptors of the human eye. J. opt. Soc. Am. 38, 570.CrossRefGoogle ScholarPubMed
Bouman, M. A. & Walraven, P. L. (1957 a). A study of normal and defective colour vision. N.P.L. Teddington Symposium, no. 8.Google Scholar
Bouman, M. A. & Walraven, P. L. (1957b). Some color naming experiments for red and green monochromatic lights. J. opt. Soc. Am. 47, 834.CrossRefGoogle ScholarPubMed
Bouman, M. A. & Walraven, P. L. (1962). Quantum theory of color discrimination of dichromates. Vision Res. 2, 177.CrossRefGoogle Scholar
Bremer, F. (1967). Interactions binoculaire dans l'aire visuelle corticale et le corps genouillé lateral du chat. Archs. mt. Physiol. Bioch. 75, 835.Google Scholar
van den Brink, G. (1963). Subjective brightness during dark-adaptation. Vision Res. 2, 495.CrossRefGoogle Scholar
van den Brink, G. (1965). A note on visual facilitation. Vison Res. 5, 217.CrossRefGoogle ScholarPubMed
van den Brink, G. & Bouman, M. A. (1954). Variation of integrative actions in time and space: an adaptational phenomenon. J. opt. Soc. Am. 44 616CrossRefGoogle Scholar
van den Brink, G. & Bouman, M. A. (1957). Visual contrast thresholds for moving point sources. J. opt. Soc. Am. 47, 612.CrossRefGoogle ScholarPubMed
van den Brink, G. & Bouman, M. A. (1963). Quantum coincidence requirements during dark-adaptation. Vision Res. 3, 479.CrossRefGoogle Scholar
Burckhardt, D. A. (1968). Cone action spectra: evidence from the goldfish electroretinogram. Vision Res. 8, 839.CrossRefGoogle Scholar
Cone, R. A. (1964). Early receptor potential of the vertebrate retina. Nature, Lond. 204, 736.CrossRefGoogle ScholarPubMed
Crawford, B. H. (1947). Visual adaptation in relation to brief conditioning stimuli. Proc. R. Soc. B 134, 283.Google ScholarPubMed
De, Valois R. L., Isnel, A. & Jacobs, G. H. (1966). Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56, 966.Google Scholar
Dodge, F. A., Knight, B. W. & Tayoda, J. (1968). Voltage noise in limulus visual cells. Science, N. Y. 160, 88.CrossRefGoogle ScholarPubMed
Easter, S. S. (1968). Excitation in the goldfish retina: evidence for a nonlinear intensity code. J. Physiol., Lond. 195, 253.CrossRefGoogle ScholarPubMed
Fischer, F. P., Bouman, M. A. & ten Doesschate, J. (1951). A case of tritanopy. Doe. Ophthalmologica 122, 368.Google Scholar
Fuortes, M. G. E. & Yeandle, S. (1964). Probability of occurrence of discrete potential waves in the eye of limulus. J. gen. Physiol. 47, 443.CrossRefGoogle ScholarPubMed
Granit, R. (1955). Receptors and Sensory Perception. New Haven.Google Scholar
van de Grind, W. A. & Bouman, M. A. (1968). A model of a retinal sampling-unit based on fluctuation theory. Kybernetik 4, 136.CrossRefGoogle Scholar
van de Grind, W. A., van Schalm, T. & Bouman, M. A. (1968). A coincidence model of the processing of quantum signals by the human retina. Kybernetik 4, 141.CrossRefGoogle ScholarPubMed
Hartline, H. K. (1934). Intensity and duration in the excitation of single photoreceptor units. J. cell. comp. Physiol. 5, 229.CrossRefGoogle Scholar
Hartline, H. K. (1957). Light quanta and the excitation of single receptors in the eye limulus. Proc. Int. Congr. Photobiol, Turin, 1957, p. 193.Google Scholar
Hartline, H. K. & Graham, C. H. (1932). Nerve impulses from single receptors in the eye. J. cell. comp. Physiol. 1, 277.CrossRefGoogle Scholar
Hecht, S. (1937). Rods, cones and the chemical basis of vision. Physiol. Rev. 17, 239.CrossRefGoogle Scholar
Hecht, S. (1942). The quantum relations of vision. J. opt. Soc. Am. 32, 42.CrossRefGoogle Scholar
van der Horst, G. J. C., Weert, CH., de Ch., M. M. & Bouman, M. A. (1967). Transfer of spatial chromaticity-contrast at threshold in the human eye. J. opt. Soc. Am. 57, 1960.CrossRefGoogle ScholarPubMed
Kuffler, S. W., Fitzhugh, R. & Barlow, H. B. (1964). Maintained activity in the cat's retina in light and darkness. J. gen. Physiol. 40, 638.Google Scholar
Marks, W. B., Dobelle, W. H. & Macnicol, E. F. Jr. (1964). Visual pigments of single primate cones. Science, N.Y. 143, 1181.CrossRefGoogle ScholarPubMed
McCree, K. J. (1960). Small field tritanopia and its effects of voluntary fixation. Optica acta 7, 317.CrossRefGoogle Scholar
Mueller, C. G. (1954) A quantitative theory of visual excitation for the single photoreceptor. Proc. natn. Acad. Sci. (U.S.A.) 40, 853.CrossRefGoogle ScholarPubMed
van Nes, F. L. (1967a). Experimental studies in spatiotemporal contrast transfer by the human eye. Thesis, Utrecht.CrossRefGoogle Scholar
van Nes, F. L. & Bouman, M. A. (1967 b). Spatial modulation transfer in the human eye. J. opt. Soc. Am. 57, 401.CrossRefGoogle Scholar
van Nes, F. L., Koenderink, J. T., Nas, H. & Bouman, M. A. (1967c). Spatiotemporal modulation transfer in the human eye. J. opt. Soc. Am. 57, 1082.CrossRefGoogle ScholarPubMed
Platt, J. R. (1956). Functional geometry and the determination pattern in non-addressed mosaic receptors. Proc. Conf. on Information Theory in Biol., Gatlinburg, 1956. London: Pergamon Press.Google Scholar
Polyak, S. L. (1941). The Retina University of Chicago Press.Google Scholar
Ratliff, F. & Mueller, C. G. (1957). Synthesis of ‘on-off’ and ‘off’ response in a visual neural system. Science, N. Y. 126, 840.CrossRefGoogle Scholar
Reichardt, W. & Macginitie, G. (1962). Zur Theorie der lateralen Inhibition. Kybernetik 1, 155.CrossRefGoogle Scholar
Ricco, A. (1877). Relasione fra il minimo angolo visuale a l'intensità luminosa. Ann. Ottalm. 6, 373.Google Scholar
Rose, A. (1948). The sensitivity performance of the human eye on an absolute scale. J. opt. Soc. Am. 38, 196.CrossRefGoogle Scholar
Schultze, M. (1866). Zur Anatomie und Physiologie der Retina. Arch. mikrosk. Anat. 2, 16.CrossRefGoogle Scholar
Stevens, S. S. (1957). On the psychophysical law. Psychol. Rev. 64, 153.CrossRefGoogle ScholarPubMed
Svaetichin, G. (1956). Spectral response curves from single cones. Acta physiol. scand. 39, suppl. 134. p. 17.Google ScholarPubMed
van der Velden, H. A. (1944). Over het aantal lichtquanta, dat nodig is voor eenlichtprikkel bij het menselijk oog. Physica 1, 179. (‘The number of light quanta necessary for the perception of light of the human eye’, Ophthalmologica III, 321, 1946, is a translation of the paper in Dutch.)CrossRefGoogle Scholar
de Vries, H. C. (1943). The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye. Physica 10, 553.CrossRefGoogle Scholar
Wagenaar, W. A. (1968). Sequential response bias in psychophysical experiments. Perception and Psychophysics 3, 364.Google Scholar
Wald, G. (1967). Blue blindness in the normal fovea. J. opt. Soc. Am. 57, 1289.CrossRefGoogle ScholarPubMed
Walraven, P. L. (1962). On the mechanisms of colour vision. Thesis Utrecht University.Google Scholar
Walraven, P. L. & Bouman, M. A. (1960). Relation between directional sensitivity and spectral response curves in human cone vision. J. opt. Soc. Am. 50, 780.CrossRefGoogle ScholarPubMed
Walraven, P. L. & Bouman, M. A. (1966). Fluctuation theory of color discrimination of normal trichromates. Vision Res. 6, 567.CrossRefGoogle Scholar
Weale, R. A. (1961). Limits of human vision. Nature, Lond. 191, 471.CrossRefGoogle ScholarPubMed
Wiesel, T. N. & Hubel, D. H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 115.CrossRefGoogle ScholarPubMed
Wildt, G. J. van der & Bouman, M. A. (1968). The dependence of Bezold- Brücke hue shift on spatial intensity distribution. Vision Res. 8, 303.CrossRefGoogle ScholarPubMed