Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T01:01:01.263Z Has data issue: false hasContentIssue false

In Situ Foraging and Feeding Behaviour of Narcomedusae (Cnidaria: Hydrozoa)

Published online by Cambridge University Press:  11 May 2009

Ronald J. Larson
Affiliation:
Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Fort Pierce, Florida 34946 USA
Claudia E. Mills
Affiliation:
Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, Washington 98250, USA
G. Richard Harbison
Affiliation:
Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Fort Pierce, Florida 34946 USA

Extract

Narcomedusae are a small and mostly oceanic group of hydromedusae whose tentacle morphology and comportment sets them off behaviourally and perhaps ecologically from most other medusae. Their tentacles are relatively few in number (2–40), stiff, and noncontractile, with points of insertion located well above the bell margin. Eleven species representing eight narcomedusan genera (Aegina, Aeginura, an undescribed aeginid, Cunina, Pegantha, Solmaris, Solmissus, and Solmundella) were observed and collected in situ in the NW Atlantic, Arctic and Antarctic, using scuba and manned submersibles. In life, the tentacles of narcomedusae are nearly always held upwards over the bell or projected laterally. The major prey were other gelatinous zooplankton, especially salps and doliolids. In the laboratory, these relatively large prey were caught on the tentacles which bend inward and coil at the tips to bring food to the mouth. By extending the tentacles perpendicular to the swimming path, these medusae achieve a relatively large encounter area, thus increasing the probability of contact with prey, for the amount of protein invested in tentacles.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benovic, A., 1973. Diurnal vertical migration of Solmissus albescens (Hydromedusae) in the southern Adriatic. Marine Biology, 18, 298301.CrossRefGoogle Scholar
Bernard, F., 1958. Plancton et benthos observés durant trois plongées en bathyscaphe au large de Toulon. Annales de l'lnstitut Océanographique, 35, 287326.Google Scholar
Bidigare, R.R. & Biggs, D.C., 1980. The role of sulfate exclusion in buoyancy maintenance by siphonophores and other oceanic gelatinous zooplankton. Comparative Biochemistry and Physiology, 66A, 467471.CrossRefGoogle Scholar
Bigelow, H.B., 1909. Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission Steamer ”Albatross”, from October 1904 to March 1905. Lt. Commander L.M. Garrett, U.S.N., commanding. XVI. The Medusae. Memoirs of the Museum of Comparative Zoology of Harvard College, 37, 1243.Google Scholar
Bouillon, J., 1987. Considérations sur le développement des Narcoméduses et sur leur position phylogénétique. Indo-Malayan Zoology, 4, 189298.Google Scholar
Carré, D., Carré, C. & Mills, C.E., in press. An ultrastructural study of the cnidocysts of narcomedusae and a medusivorous ctenophore: distinctive new features and confirmation of kleptocnidism. Tissue and Cell.Google Scholar
Emery, K.O., 1952. Submarine photography with the benthograph. Scientific Monthly, New York, 75, 311.Google Scholar
Gerritsen, J. & Strickler, J.R., 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. Journal of the Fisheries Research Board of Canada, 34, 7382.CrossRefGoogle Scholar
Gladfelter, W.B., 1973. A comparative analysis of the locomotory systems of medusoid Cnidaria. Helgolander Wissenschaftliche Meeresuntersuchungen, 25, 228272.CrossRefGoogle Scholar
Hartman, O. & Emery, K.O., 1956. Bathypelagic coelenterates. Limnology and Oceanography, 1, 304312.CrossRefGoogle Scholar
Hesthagen, I.H., 1971. On the biology of the bottom-dwelling trachymedusa Tesserogastria musculosa Beyer. Norwegian Journal of Zoology, 19, 119.Google Scholar
Houot, G.S., 1960. Deep diving off Japan. National Geographic Magazine, 17, 138150.Google Scholar
Kramp, P.L., 1961. Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom, 40, 1469.Google Scholar
Laban, A., Pérès, J.-M. & Picard, J., 1963. La photographie sous-marine profonde et son exploitation scientifique. Bulletin de l'lnstitut Océanographique, no 1258, 32 pp.Google Scholar
Larson, R.J., 1978. Aspects of the Feeding and Functional Morphology of Scyphomedusae. MS thesis, University of Puerto Rico.Google Scholar
Larson, R.J., 1979. Feeding in coronate medusae (Class Scyphozoa, Order Coronatae). Marine Behaviour and Physiology, 6, 123129.CrossRefGoogle Scholar
Larson, R.J., 1987. Trophic ecology of planktonic gelatinous predators in Saanich Inlet, British Columbia: diets and prey selection. Journal of Plankton Research, 9, 811820.CrossRefGoogle Scholar
Mackie, G.O. & Mackie, G.V., 1963. Systematic and biological notes on living hydromedusae from Puget Sound. Bulletin. National Museum of Canada, no. 199, 6384.Google Scholar
Madin, L.P., 1988. Feeding behavior of tentaculate predators: in situ observations and a conceptual model. Bulletin of Marine Science, 43, 413429.Google Scholar
Madin, L.P., Harbison, G.R. & Rioux, T. 1986. Blue water diving equipment and procedures used at Woods Hole Oceanographic Institution. In Blue Water Diving Guidelines (ed. Heine, J.N.), pp. 4346. La Jolla: California Sea Grant Program,Google Scholar
Mills, C.E., 1981. Diversity of swimming behaviors in hydromedusae as related to feeding and utilization of space. Marine Biology, 64, 185189.Google Scholar
Mills, C.E., 1988. Species differences in diet and prey selection by hydromedusae. American Zoologist, 28, 192A.Google Scholar
Mills, C.E. & Goy, J., 1988. In situ observations of the behavior of mesopelagic Solmissus narcomedusae (Cnidaria, Hydrozoa). Bulletin of Marine Science, 43, 739751.Google Scholar
Mills, C.E. & Miller, R.L., 1984. Ingestion of a medusa (Aegina citrea) by the nematocyst-containing ctenophore Haeckelia rubra (formerly Euchlora rubra): phylogenetic implications. Marine Biology, 78, 215221.Google Scholar
Pérès, J.-M., 1958. Remarques générates sur un ensemble de quinze plongés effectués avec le bathyscaphe F.N.R.S. III. Annales de I'Institut Océanographique, 35, 259285.Google Scholar
Pérès, J.-M., 1959. Deux plongées au large du Japon avec le bathyscaphe francais F.N.R.S. III. Bulletin de l'Institut de Océanographique, no. 1134, 28 pp.Google Scholar
Purcell, J.E., & Mills, C.E., 1988. The correlation between nematocyst types and diets in pelagic hydrozoa. In The Biology of Nematocysts (ed. Hessinger, D.A. and Lenhoff, H.), pp. 463485. San Diego: Academic Press.Google Scholar
Russell, F.S., 1953. Medusae of the British Isles. Anthomedusae, Leptomedusae, Limnomedusae, Trachymedusae, and Narcomedusae. London: Cambridge University Press.Google Scholar
Tregouboff, G., 1959. Prospection biologique sous-marine dans la région de Villefranche-sur-Mer en mars 1959. Bulletin de l'Institut Océanographique, no. 1156, 18 pp.Google Scholar
Vanhöffen, E., 1908. Die Narcomedusen. Deutsche Tiefsee-Expedition 1898–1899, 19, 4274.Google Scholar
Youngbluth, M.J., 1984. Manned submersibles and sophisticated instrumentation: tools for oceano-graphic research. In Proceedings of SUBTECH1983 Symposium, pp. 335344. London: Society of Underwater Technology.Google Scholar