Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T16:10:57.344Z Has data issue: false hasContentIssue false

Nd–Sr–Pb isotopic composition and mantle sources of Triassic rift units in the Serbo-Macedonian and the western Rhodope massifs (Bulgaria–Greece)

Published online by Cambridge University Press:  26 September 2011

NIKOLAY BONEV*
Affiliation:
Department of Geology, Palaeontology and Fossil Fuels, Sofia University St Kliment Ohridski, BG-1504 Sofia, Bulgaria
YILDIRIM DILEK
Affiliation:
Department of Geology, Miami University, Oxford, OH 45056, USA
JOHN M. HANCHAR
Affiliation:
Department of Earth Sciences, Memorial University of Newfoundland, St John's, NL A1B 3X5, Canada
KAMEN BOGDANOV
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Sofia University St Kliment Ohridski, BG-1504 Sofia, Bulgaria
LASLO KLAIN
Affiliation:
Department of Geology, Palaeontology and Fossil Fuels, Sofia University St Kliment Ohridski, BG-1504 Sofia, Bulgaria
*
Author for correspondence: niki@gea.uni-sofia.bg

Abstract

We report on the field occurrence and isotopic compositions of metamafic rocks exposed in the Serbo-Macedonian (Volvi and Therma bodies) and western Rhodope (Rila Mountains) massifs of Bulgaria and Greece. These metamafic units consist of high- and low-Ti gabbroic and basaltic rocks, whose Nd–Sr–Pb isotopes are compatible with mantle-derived MORB and OIB components with a small amount of crustal material involved in their melt source. These isotopic features combined with the field observations are consistent with an intra-continental rift origin of the metamafic rocks protolith, and are comparable to those of the Triassic rift-related mafic rocks in the northern Aegean region.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bazylev, B. A., Zakariadze, G. S., Zeljazkova-Panayotova, M. D., Kolcheva, K., Obërhansli, R. & Solovieva, N. V. 1999. Petrology of ultrabasites from the ophiolitic association in crystalline basement of the Rhodope Massif. Petrology 7, 191212.Google Scholar
Bonev, N. & Beccaletto, L. 2007. From syn- to post-orogenic Tertiary extension in the north Aegean region: constraints on the kinematics in the eastern Rhodope-Thrace, Bulgaria-Greece and the Biga Peninsula, NW Turkey. In The Geodynamics of the Aegean and Anatolia (eds Taymaz, T., Yilmaz, Y. & Dilek, Y.), pp. 113–42. Geological Society of London, Special Publication no. 291.Google Scholar
Bonev, N. & Dilek, Y. 2010. Geochemistry and tectonic significance of proto-ophiolitic metamafic units from the Serbo-Macedonian and western Rhodope massifs (Bulgaria-Greece). International Geology Review 52, 298335.Google Scholar
Burg, J.-P., Godfriaux, I. & Ricou, L.-E. 1995. Extension of the Mesozoic Rhodope thrust units in the Vertiskos-Kerdilion Massifs (northern Greece). Comptes Rendus de l'Academie des Sciences Paris 320, 889–96.Google Scholar
Burg, J.-P., Ricou, L.-E., Ivanov, Z., Godfriaux, I., Dimov, D. & Klain, L. 1996. Syn-metamorphic nappe complex in the Rhodope Massif. Structure and kinematics. Terra Nova 8, 615.Google Scholar
Christofides, G., Koroneos, A., Soldatos, T., Eleftheriadis, G. & Kilias, A. 2001. Eocene magmatism (Sithonia and Elatia plutons) in the internal Hellenides and implications for Eocene-Miocene geological evolution of the Rhodope massif (Northern Greece). Acta Vulcanologica 13, 7389.Google Scholar
DePaolo, D. J. 1988. Neodymium Isotope Geochemistry. New York: Springer, 183 pp.Google Scholar
Dilek, Y. 2006. Collision tectonics of the Eastern Mediterranean region: causes and consequences. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia (eds Dilek, Y. & Pavlides, S.), pp. 1–13. Geological Society of America Special Paper no. 409.Google Scholar
Dimitriadis, S. & Asvesta, A. 1993. Sedimentation and magmatism related to the Triassic rifting and later events in the Vardar-Axios zone. Bulletin of the Geological Society of Greece 28, 149–68.Google Scholar
Dimitrijevic, M. D. 1974. Sur l'age du métamorphisme et de plissements dans la masse Sérbo-Macédonienne. Bulletin de l'Association Géologique Carpatho-Balkanique 21, 45–8.Google Scholar
Dinter, D. A. 1998. Late Cenozoic extension of the Alpine collisional orogen, northeastern Greece: origin of the north Aegean basin. Geological Society of America Bulletin 110, 1208–30.Google Scholar
Dinter, D. A., Macfarlane, A. M., Hames, W., Isachsen, C., Bowring, S. & Royden, L. 1995. U-Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics 14, 886908.Google Scholar
Dixon, J. E. & Dimitriadis, S. 1984. Metamorphosed ophiolitic rocks from the Serbo-Macedonian Massif, near Lake Volvi, north-east Greece. In Tectonic Evolution of the Eastern Mediterranean (eds Robertson, A. H. F. & Dixon, J. E.), pp. 603–18. Geological Society of London, Special Publication no. 17.Google Scholar
Hart, S. R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–57.Google Scholar
Hickey-Vargas, R., Savov, I. P., Bizimis, M., Ishii, T. & Fujioka, K. 2007. Origin of diverse geochemical signatures in igneous rocks from the West Philippine Basin: implications for tectonic models. In Back-Arc Spreading Systems – Geological, Biological, Chemical, and Physical Interactions (eds Christie, D., Fisher, C. R., Lee, S.-M. & Givens, S.), pp. 287303. American Geophysical Union, Geophysical Monograph vol. 166. Washington, DC, USA.Google Scholar
Himmerkus, F., Reischmann, T. & Kostopoulos, D. 2009. Triassic rift-related meta-granites in the Internal Hellenides. Geological Magazine 146, 252–65.Google Scholar
Himmerkus, F., Zachariadis, P., Reischmann, T. & Kostopoulos, D. 2005. The mafic complexes of the Athos-Volvi-Zone – a suture zone between the Serbo-Macedonian Massif and the Rhodope Massif? Geophysical Research Abstracts 7, paper EGU05-A-10240.Google Scholar
Kockel, F., Mollat, H. & Walther, H. W. 1971. Geologie des Serbo-Mazedonischen massiv und seines mesozoischen Rahmens (Nordgriechenland). Geologisches Jahrbuch 89, 529–51.Google Scholar
Kockel, F., Mollat, H. & Walther, H. W. 1977. Erlauterungen zur geologicschen karte der Chalkidiki und angrenzender Gebiete 1/100.000 (Nord Griechenland). Hanover: Bundesanstalt für Geowissenschaften und Rohstoffe, 119 pp.Google Scholar
Kockel, F. & Walther, H. W. 1965. Die Strimonlinie als Grenze zwischen Serbo-Mazedonischen und Rila-Rhodope Massiv in Ost-Mazedonien. Geologisches Jahrbuch 83, 575602.Google Scholar
Kolcheva, K. & Eskenazy, G. 1988. Geochemistry of metaeclogites from the Central and Eastern Rhodope Mts. Geologica Balcanica 18, 6178.Google Scholar
Koukouvelas, I. & Doutsos, T. 1990. Tectonic stages along a traverse cross-cutting the Rhodopian zone (Greece). Geologische Rundschau 79, 753–76.Google Scholar
Kronberg, P., Meyer, W., & Pilger, A. 1970. Geologie der Rila-Rhodope-Masse zwischen Strimon und Nestos (Nordgriechenland). Beihtrage Geologisches Jahrbuch 88, 133–80.Google Scholar
Liati, A. 2005. Identification of repeated Alpine (ultra) high-pressure metamorphic events by U-Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of Northern Greece. Contributions to Mineralogy and Petrology 150, 608–30.Google Scholar
Liati, A., Gebauer, D. & Fanning, C. M. 2011. Geochronology of the Alpine UHP Rhodope zone: a review of isotopic ages and constraints on the geodynamic evolution. In Ultrahigh-Pressure Metamorphism 25 Years after the Discovery of Coesite and Diamond (eds Dobrzhinetskaya, L. F., Faryad, S. W., Wallis, S. & Cuthbert, S.), pp. 295324. Amsterdam: Elsevier.Google Scholar
Liati, A. & Mposkos, E. 1990. Evolution of eclogites in the Rhodope zone of northern Greece. Lithos 25, 8999.Google Scholar
Lips, A. L. W., White, S. H. & Wijbrans, J. R. 2000. Middle-Late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece. Geodinamica Acta 13, 281–92.Google Scholar
Machev, P. 2002. Metabasites from the Kabul mixed complex (western Rila Mountains) – magmatic and metamorphic evolution. Proceedings of the Annual Conference of the Bulgarian Geological Society, pp. 8–10.Google Scholar
Mercier, J. 1966. Paléogéographie, orogénèse, métamorphisme et magmatisme des zones internes des Hellénides en Macédonie (Grèce): vue d'ensemble. Bulletin de la Societe géologique de France 8, 1020–49.Google Scholar
Papanikolaou, D. 2009. Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 108, 262–80.Google Scholar
Papanikolaou, D. & Panagopoulos, A. 1981. On the structural style of southern Rhodope, Greece. Geologica Balcanica 11, 1322.Google Scholar
Pe-Piper, G. 1998. The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope chemistry. Geological Magazine 135, 331–48.Google Scholar
Peytcheva, I., Von Quadt, A., Ovtcharova, M., Handler, R., Neubauer, F., Salnikova, E., Kostitsin, Y., Sarov, S. & Kolcheva, K. 2004. Metagranitoids from the eastern part of the Central Rhodopean Dome (Bulgaria): U-Pb, Rb-Sr and 40Ar/39Ar timing of emplacement and isotopic-geochemical features. Mineralogy and Petrology 82, 131.Google Scholar
Ricou, L.-E., Burg, J.-P., Godfriaux, I. & Ivanov, Z. 1998. The Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodinamica Acta 11, 285309.Google Scholar
Robertson, A. H. F., Dixon, J. E., Brown, S., Collins, A., Morris, A., Pickett, E., Sharp, I. & Ustaömer, T. 1996. Alternative tectonic models for the Late Palaeozoic-Early Tertiary development of Tethys in the Eastern Mediterranean region. In Paleomagnetism and Tectonics of the Mediterranean Region (eds Morris, A. & Tarling, D. H.), pp. 239–63. Geological Society of London, Special Publication no. 105.Google Scholar
Rollinson, H. 1993. Using geochemical data: evaluation, presentation, interpretation. Harlow, Essex: Pearson Education Limited, 343 pp.Google Scholar
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M. & Dragusanu, C. 2000. JNdi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chemical Geology 168, 279–81.Google Scholar
Turpaud, P. & Reischmann, T. 2010. Characterization of igneous terranes by zircon dating: implications for UHP occurrences and suture identification in the Central Rhodope, northern Greece. International Journal of Earth Sciences 99, 567–91.Google Scholar
Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. 1993. Recalibration of NBS lead standard using 202Pb + 205Pb double spike. Terra Abstracts 5, 396.Google Scholar
Zagorčev, I. S. 1994. Structure and tectonic evolution of the Pirin-Pangeon structural zone (Rhodope Massif, southern Bulgaria and northern Greece). Geological Journal 29, 241–68.Google Scholar
Zagorchev, I. 2001. Introduction to the geology of SW Bulgaria: an overview. Geologica Balcanica 31, 352.Google Scholar
Zagorchev, I., Moorbath, S. & Lilov, P. 1987. Radiogeochronological data on the Alpine igneous activity in the western part of the Rhodope Massif. Geologica Balcanica 17, 5971.Google Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.Google Scholar