Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T09:48:25.943Z Has data issue: false hasContentIssue false

Chapter 23 - Pulmonary pre-invasive disease

Published online by Cambridge University Press:  05 June 2014

Philip Hasleton
Affiliation:
University of Manchester
Douglas B. Flieder
Affiliation:
Fox Chase Cancer Center, Philadelphia
Get access

Summary

Introduction

Primary carcinoma of the lung remains globally the most frequent cause of death from malignancy. Although the incidence of this most fatal of diseases is falling in the USA and some western European countries, it is rising in other parts of the world. The enormous increase in tobacco consumption in Asia portends a rise in this disease in those affected countries. Primary lung cancer will be a global problem for many years to come.

As well as a geographic shift in incidence, the most striking demographic change, at least in “Western” populations, has been the decline in lung cancer in males, yet a rise in women. This is almost certainly due to gender differences in smoking habits in previous decades. In addition there has been a shift in the reported incidence of different cell types. In Western populations squamous cell carcinoma and possibly small cell carcinoma (SCLC) have declined, while adenocarcinoma has risen in frequency. While some classification bias may account for a proportion of this change, these shifts have been attributed to changes in smoking habits, changes in cigarettes themselves and, given their apparent greater propensity to develop adenocarcinoma, the increase in the number of women who smoke.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jemal, A, Travis, WD, Tarone, RE, Travis, L, Devesa, SS.Lung cancer rates convergence in young men and women in the United States: analysis by birth cohort and histologic type. Int J Cancer 2003;105:101–7.CrossRefGoogle ScholarPubMed
Campobasso, O, Andrion, A, Ribotta, M, Ronco, G.The value of the 1981 WHO histological classification in inter-observer reproducibility and changing pattern of lung cancer. Int J Cancer 1993;53:205–8.CrossRefGoogle ScholarPubMed
Strauss, GM, Gleason, RE, Sugarbaker, DJ.Screening for lung cancer. Another look; a different view. Chest 1997;111:754–68.CrossRefGoogle Scholar
Diederich, S, Wormanns, D.Impact of low-dose CT on lung cancer screening. Lung Cancer 2004;45 Suppl 2:S13–9.
Jett, JR.Limitations of screening for lung cancer with low-dose spiral computed tomography. Clin Cancer Res 2005;11:4988s–92s.CrossRefGoogle ScholarPubMed
Sone, S, Nakayama, T, Honda, T, et al. Long-term follow-up study of a population-based 1996–1998 mass screening programme for lung cancer using mobile low-dose spiral computed tomography. Lung Cancer 2007;58:329–41.CrossRefGoogle ScholarPubMed
Travis, WD, World Health Organization, International Agency for Research on Cancer, International Association for the Study of Lung Cancer, International Academy of Pathology. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2004.Google Scholar
Nasiell, M, Auer, G, Kato, H.Cytological studies in man and animals on developoment of bronchogenic carcinoma. In McDowell, EM, ed. Lung Carcinomas. Edinburgh: Churchill Livingstone, 1987. pp. 207–42.Google Scholar
Nettesheim, P, Klein-Szanto, A, Yarita, T.Experimental models for the study of morphogenesis of lung cancer. In Shimosato, YMM, Nettesheim, P, eds. Morphogenesis of Lung Cancer. Boca Raton: CRC Press, 1982. pp. 131–66.Google Scholar
Becci, PJ, McDowell, EM, Trump, BF.The respiratory epithelium. IV. Histogenesis of epidermoid metaplasia and carcinoma in situ in the hamster. J Natl Cancer Inst 1978;61:577–86.Google ScholarPubMed
Auer, G, Ono, J, Nasiell, M, et al. Reversibility of bronchial cell atypia. Cancer Res 1982;42:4241–7.Google ScholarPubMed
Hammond, EC, Auerbach, O, Kirman, D, Garfinkel, L.Effects of cigarette smoking on dogs. Arch Environ Health 1970;21:740–53.Google ScholarPubMed
Parkin, ME, Tyczynski, JE, Boffetta, P.Lung cancer epidemiology and aetiology. In Travis, WD, Brambilla, E, Müller-Hemelink, HK, eds. World Health Organization Classification of Tumours Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2004. pp. 12–5.Google Scholar
Hecht, SS.Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999;91:1194–210.CrossRefGoogle ScholarPubMed
Hecht, SS.Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg 2006;391:603–13.CrossRefGoogle ScholarPubMed
Spitz, MR, Amos, CI, Dong, Q, Lin, J, Wu, X.The CHRNA5-A3 region on chromosome 15q24–25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 2008;100:1552–6.CrossRefGoogle ScholarPubMed
Lee, KM, Kang, D, Clapper, ML, et al. CYP1A1, GSTM1, and GSTT1 polymorphisms, smoking, and lung cancer risk in a pooled analysis among Asian populations. Cancer Epidemiol Biomarkers Prev 2008;17:1120–6.CrossRefGoogle Scholar
Mao, L.Molecular abnormalities in lung carcinogenesis and their potential clinical implications. Lung Cancer 2001;34 Suppl 2:S27–34.
Schatzkin, A.Sir Richard Doll on chance and genetic susceptibility in carcinogenesis, or, why not all smokers get lung cancer. Cancer Epidemiol Biomarkers Prev 2006;15:1420.CrossRefGoogle Scholar
Doll, R.Commentary: the age distribution of cancer and a multistage theory of carcinogenesis. Int J Epidemiol 2004;33:1183–4.CrossRefGoogle Scholar
Braakhuis, BJ, Tabor, MP, Kummer, JA, Leemans, CR, Brakenhoff, RH.A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res 2003;63:1727–30.Google ScholarPubMed
Park, IW, Wistuba, II, Maitra, A, et al. Multiple clonal abnormalities in the bronchial epithelium of patients with lung cancer. J Natl Cancer Inst 1999;91:1863–8.CrossRefGoogle ScholarPubMed
Kotton, DN, Fine, A.Lung stem cells. Cell Tissue Res 2008;331:145–56.CrossRefGoogle ScholarPubMed
Wistuba, II, Behrens, C, Virmani, AK, et al. Allelic losses at chromosome 8p21–23 are early and frequent events in the pathogenesis of lung cancer. Cancer Res 1999;59:1973–9.Google ScholarPubMed
Wistuba, II, Mao, L, Gazdar, AF.Smoking molecular damage in bronchial epithelium. Oncogene 2002;21:7298–306.CrossRefGoogle ScholarPubMed
Ma, J, Gao, M, Lu, Y, et al. Gain of 1q25–32, 12q23–24.3, and 17q12–22 facilitates tumorigenesis and progression of human squamous cell lung cancer. J Pathol 2006;210:205–13.CrossRefGoogle ScholarPubMed
Woenckhaus, M, Klein-Hitpass, L, Grepmeier, U, et al. Smoking and cancer-related gene expression in bronchial epithelium and non-small-cell lung cancers. J Pathol 2006;210:192–204.CrossRefGoogle ScholarPubMed
Auerbach, O, Forman, JB, Gere, JB, et al. Changes in the bronchial epithelium in relation to smoking and cancer of the lung; a report of progress. N Engl J Med 1957;256:97–104.CrossRefGoogle ScholarPubMed
Auerbach, O, Hammond, EC, Garfinkel, L.Changes in bronchial epithelium in relation to cigarette smoking, 1955–1960 vs. 1970–1977. N Engl J Med 1979;300:381–5.CrossRefGoogle ScholarPubMed
Auerbach, O, Stout, AP, Hammond, EC, Garfinkel, L.Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N Engl J Med 1961;265:253–67.CrossRefGoogle ScholarPubMed
Auerbach, O.Pathogenesis of lung cancer. Cancer 1961;7:11–21.Google Scholar
Auerbach, O, Saccomanno, G, Kuschner, M, Brown, RD, Garfinkel, L.Histologic findings in the tracheobronchial tree of uranium miners and non-miners with lung cancer. Cancer 1978;42:483–9.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Saccomanno, G, Archer, VE, Auerbach, O, Saunders, RP, Brennan, LM.Development of carcinoma of the lung as reflected in exfoliated cells. Cancer 1974;33:256–70.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Frost, JK, Ball, WC Jr, Levin, ML, et al. Sputum cytopathology: use and potential in monitoring the workplace environment by screening for biological effects of exposure. J Occup Med 1986;28:692–703.CrossRefGoogle Scholar
Hirsch, FR, Prindiville, SA, Miller, YE, et al. Fluorescence versus white-light bronchoscopy for detection of preneoplastic lesions: a randomized study. J Natl Cancer Inst 2001;93:1385–91.CrossRefGoogle ScholarPubMed
Loewen, G, Natarajan, N, Tan, D, et al. Autofluorescence bronchoscopy for lung cancer surveillance based on risk assessment. Thorax 2007;62:335–40.CrossRefGoogle ScholarPubMed
Peters, EJ, Morice, R, Benner, SE, et al. Squamous metaplasia of the bronchial mucosa and its relationship to smoking. Chest 1993;103:1429–32.CrossRefGoogle ScholarPubMed
Edell, E, Lam, S, Pass, H, et al. Detection and localization of intraepithelial neoplasia and invasive carcinoma using fluorescence-reflectance bronchoscopy: an international, multicenter clinical trial. J Thorac Oncol 2009;4:49–54.CrossRefGoogle ScholarPubMed
Kennedy, TC, McWilliams, A, Edell, E, et al. Bronchial intraepithelial neoplasia/early central airways lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007;132:221S–33S.
Moro-Sibilot, D, Jeanmart, M, Lantuejoul, S, et al. Cigarette smoking, preinvasive bronchial lesions, and autofluorescence bronchoscopy. Chest 2002;122:1902–8.CrossRefGoogle ScholarPubMed
Lam, S, leRiche, JC, Zheng, Y, et al. Sex-related differences in bronchial epithelial changes associated with tobacco smoking. J Natl Cancer Inst 1999;91:691–6.CrossRefGoogle ScholarPubMed
Auerbach, O, Stout, AP, Hammond, EC, Garfinkel, L.Changes in bronchial epithelium in relation to sex, age, residence, smoking and pneumonia. N Engl J Med 1962;267:111–9.CrossRefGoogle ScholarPubMed
Paris, C, Benichou, J, Bota, S, et al. Occupational and nonoccupational factors associated with high grade bronchial pre-invasive lesions. Eur Respir J 2003;21:332–41.CrossRefGoogle ScholarPubMed
Haussinger, K, Becker, H, Stanzel, F, et al. Autofluorescence bronchoscopy with white light bronchoscopy compared with white light bronchoscopy alone for the detection of precancerous lesions: a European randomised controlled multicentre trial. Thorax 2005;60:496–503.CrossRefGoogle ScholarPubMed
Agapitos, E, Delsedime, L, Kalandidi, A, et al. Correlation of early pathological lesions in the bronchial tree with environmental exposures: study objectives and preliminary findings. IARC Sci Publ 1991;112:263–8.Google Scholar
Lamb, D, Reid, L.Goblet cell increase in rat bronchial epithelium after exposure to cigarette and cigar tobacco smoke. Br Med J 1969;1:33–5.CrossRefGoogle ScholarPubMed
Trump, BF, McDowell, EM, Glavin, F, et al. The respiratory epithelium. III. Histogenesis of epidermoid metaplasia and carcinoma in situ in the human. J Natl Cancer Inst 1978;61:563–75.Google ScholarPubMed
Travis, WD.Lung. In Henson, DE, Albores-Saavedra, J, eds. Pathology of Incipient Neoplasia. New York: Oxford University Press, 2001. pp. 295–316.Google Scholar
Calderon-Garciduenas, L, Rodriguez-Alcaraz, A, Villarreal-Calderon, A, et al. Nasal epithelium as a sentinel for airborne environmental pollution. Toxicol Sci 1998;46:352–64.CrossRefGoogle ScholarPubMed
Gong, H Jr, Fligiel, S, Tashkin, DP, Barbers, RG.Tracheobronchial changes in habitual, heavy smokers of marijuana with and without tobacco. Am Rev Respir Dis 1987;136:142–9.CrossRefGoogle ScholarPubMed
Saccomanno, G, Saunders, RP, Archer, VE, et al. Cancer of the lung: the cytology of sputum prior to the development of carcinoma. Acta Cytol 1965;9:413–23.Google ScholarPubMed
Valentine, EH.Squamous metaplasia of the bronchus; a study of metaplastic changes occurring in the epithelium of the major bronchi in cancerous and noncancerous cases. Cancer 1957;10:272–9.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Mayne, ST, Redlich, CA, Cullen, MR.Dietary vitamin A and prevalence of bronchial metaplasia in asbestos-exposed workers. Am J Clin Nutr 1998;68:630–5.CrossRefGoogle ScholarPubMed
Gazdar, AF, Carbone, DP.The Biology and Molecular Genetics of Lung Cancer. Austin Boca Raton, FL: R.G. Landes; distributed worldwide by CRC Press; 1994.Google ScholarPubMed
Franklin, WA, Wistuba, I, Geisinger, KR.Squamous dysplasia and carcinoma in situ. In Travis, WD, Brambilla, E, Müller-Hermelink, HK, eds. World Health Organization Classification of Tumours Pathology and genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2004. pp. 68–72.Google Scholar
Melamed, MR, Zaman, MB.Pathogenesis of epidermoid carcinoma of lung. In Shimosato, Y MM, Nettesheim, P, ed. Morphogenesis of Lung Cancer, vol. 1. Boca Raton: CRC, 1982. pp. 37–64.Google Scholar
Kerr, KM, Noguchi, M.Pathology of screen-detected lesions. In Hirsch, FR, Bunn, Jr PA, Kato, H, Mulshine, JL, eds. IASLC Textbook on Prevention and Early Detection of Lung Cancer. London: Martin Dunitz, 2005.Google Scholar
Woolner, LB, Fontana, RS, Cortese, DA, et al. Roentgenographically occult lung cancer: pathologic findings and frequency of multicentricity during a 10-year period. Mayo Clin Proc 1984;59:453–66.CrossRefGoogle ScholarPubMed
Carter, D, Marsh, BR, Baker, R, Erozan, YS, Frost, JK.Relationships of morphology to clinical presentation in ten cases of early squamous cell carcinoma of the lung. Cancer 1976;37:1389–96.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Nagamoto, N, Saito, Y, Sato, M, et al. Clinicopathological analysis of 19 cases of isolated carcinoma in situ of the bronchus. Am J Surg Pathol 1993;17:1234–43.CrossRefGoogle Scholar
Lam, S, MacAulay, C, leRiche, JC, Palcic, B.Detection and localization of early lung cancer by fluorescence bronchoscopy. Cancer 2000;89:2468–73.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Banerjee, AK, Rabbitts, PH, George, J.Lung cancer. 3: Fluorescence bronchoscopy: clinical dilemmas and research opportunities. Thorax 2003;58:266–71.CrossRefGoogle ScholarPubMed
Ikeda, N, Honda, H, Hayashi, A, et al. Early detection of bronchial lesions using newly developed videoendoscopy-based autofluorescence bronchoscopy. Lung Cancer 2006;52:21–7.CrossRefGoogle ScholarPubMed
Lam, S, Kennedy, T, Unger, M, et al. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest 1998;113:696–702.CrossRefGoogle ScholarPubMed
Hanibuchi, M, Yano, S, Nishioka, Y, et al. Autofluorescence bronchoscopy, a novel modality for the early detection of bronchial premalignant and malignant lesions. J Med Invest 2007;54:261–6.CrossRefGoogle ScholarPubMed
Pasic, A, Brokx, HA, Comans, EF, et al. Detection and staging of preinvasive lesions and occult lung cancer in the central airways with 18F-fluorodeoxyglucose positron emission tomography: a pilot study. Clin Cancer Res 2005;11:6186–9.CrossRefGoogle ScholarPubMed
Pierard, P, Faber, J, Hutsebaut, J, et al. Synchronous lesions detected by autofluorescence bronchoscopy in patients with high-grade preinvasive lesions and occult invasive squamous cell carcinoma of the proximal airways. Lung Cancer 2004;46:341–7.CrossRefGoogle ScholarPubMed
Kayser, K, Kosjerina, Z, Goldmann, T, et al. Lung carcinoma-associated atypical adenomatoid hyperplasia, squamous cell dysplasia, and chromosome alterations in non-neoplastic bronchial mucosa. Lung Cancer 2005;47:205–14.CrossRefGoogle ScholarPubMed
Kayser, K, Kosjerina, Z, Goldmann, T, et al. Phenotype and genotype associations of lung carcinoma with atypical adenomatoid hyperplasia, squamous cell dysplasia, and chromosome alterations in non-neoplastic bronchial mucosa. Rom J Morphol Embryol 2005;46:5–10.Google ScholarPubMed
Nuorva, K, Soini, Y, Kamel, D, et al. Concurrent p53 expression in bronchial dysplasias and squamous cell lung carcinomas. Am J Pathol 1993;142:725–32.Google ScholarPubMed
Fisseler-Eckhoff, A, Prebeg, M, Voss, B, Muller, KM.Extracellular matrix in preneoplastic lesions and early cancer of the lung. Pathol Res Pract 1990;186:95–101.CrossRefGoogle ScholarPubMed
Meert, AP, Feoli, F, Martin, B, Ninane, V, Sculier, JP.Angiogenesis in preinvasive, early invasive bronchial lesions and micropapillomatosis and correlation with EGFR expression. Histopathology 2007;50:311–7.CrossRefGoogle ScholarPubMed
Muller, KM, Muller, G.The ultrastructure of preneoplastic changes in the bronchial mucosa. Curr Top Pathol 1983;73:233–63.CrossRefGoogle ScholarPubMed
Keith, RL, Miller, YE, Gemmill, RM, et al. Angiogenic squamous dysplasia in bronchi of individuals at high risk for lung cancer. Clin Cancer Res 2000;6:1616–25.Google ScholarPubMed
Shibuya, K, Hoshino, H, Chiyo, M, et al. High magnification bronchovideoscopy combined with narrow band imaging could detect capillary loops of angiogenic squamous dysplasia in heavy smokers at high risk for lung cancer. Thorax 2003;58:989–95.CrossRefGoogle ScholarPubMed
Tao, LC, Chamberlain, DW, Delarue, NC, Pearson, FG, Donat, EE.Cytologic diagnosis of radiographically occult squamous call carcinoma of the lung. Cancer 1982;50:1580–6.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Frost, JK, Erozan, YS, Gupta, PK.Cytopathology. In NCI, ed. Atlas of Early Lung Cancer. Tokyo: Igaku-Shoin, 1983.Google Scholar
Baba, M, Iyoda, A, Nomoto, Y, et al. Cytological findings of pre-invasive bronchial lesions detected by light-induced fluorescence endoscopy in a lung cancer screening system. Oncol Rep 2007;17:579–83.Google Scholar
Woolner, LB, David, E, Fontana, RS, Andersen, HA, Bernatz, PE.In situ and early invasive bronchogenic carcinoma. Report of 28 cases with postoperative survival data. J Thorac Cardiovasc Surg 1970;60:275–90.Google ScholarPubMed
Early lung cancer detection: summary and conclusions. Am Rev Respir Dis 1984;130:565–70.
Kennedy, TC, Franklin, WA, Prindiville, SA, et al. High prevalence of occult endobronchial malignancy in high risk patients with moderate sputum atypia. Lung Cancer 2005;49:187–91.CrossRefGoogle ScholarPubMed
Naryshkin, S, Bedrossian, CW.Selected mimics of malignancy in sputum and bronchoscopic cytology specimens. Diagn Cytopathol 1995;13:443–7.CrossRefGoogle ScholarPubMed
Policarpio-Nicolas, ML, Wick, MR.False-positive interpretations in respiratory cytopathology: exemplary cases and literature review. Diagn Cytopathol 2008;36:13–9.CrossRefGoogle ScholarPubMed
Ohori, NP, Hoff, ER.Cytopathology of pulmonary neoplasia. In Tomashefski, JF, Cagle, PT, Farver, CF, Fraire, AE, eds. Dail and Hammar's Pulmonary Pathology. New York: Springer, 2008. pp. 767–95.CrossRefGoogle Scholar
Nicholson, AG, Perry, LJ, Cury, PM, et al. Reproducibility of the WHO/IASLC grading system for pre-invasive squamous lesions of the bronchus: a study of inter-observer and intra-observer variation. Histopathology 2001;38:202–8.CrossRefGoogle ScholarPubMed
Venmans, BJ, Van der Linden, JC, Elbers, JRJ.Observer variability in histopathological reporting of bronchial biopsy specimens: influence on the results of autofluorescence bronchoscopy in detection of bronchial neoplasia. J Bronchol 2000;7:210–4.CrossRefGoogle Scholar
Wang, GF, Lai, MD, Yang, RR, et al. Histological types and significance of bronchial epithelial dysplasia. Mod Pathol 2006;19:429–37.CrossRefGoogle ScholarPubMed
Kerr, KM, Popper, H.The differential diagnosis of pulmonary preinvasive lesions. Eur Respir Mon 2007;39:37–62.Google Scholar
Spencer, H, Dail, DH, Arneaud, J.Non-invasive bronchial epithelial papillary tumors. Cancer 1980;45:1486–97.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Colby, TV, Koss, MN, Travis, WD.Tumours of the lower respiratory tract. In AFIP Atlas of Tumour Pathology. Washington, D.C., 1995.Google Scholar
Kerr, KM.Morphology and genetics of preinvasive pulmonary disease. Curr Diag Pathol 2004;10:259–68.CrossRefGoogle Scholar
Kerr, KM, Fraire, AE.Pre-invasive disease. In Tomashefski, JF, Cagle, PT, Farver, CF, Fraire, AE, eds. Dail and Hammar's Pulmonary Pathology. New York: Springer, 2008. pp. 158–215.CrossRefGoogle Scholar
Wistuba, II, Gazdar, AF.Lung cancer preneoplasia. Annu Rev Pathol 2006;1:331–48.CrossRefGoogle ScholarPubMed
Lantuejoul, S, Salameire, D, Salon, C, Brambilla, E.Pulmonary preneoplasia – sequential molecular carcinogenetic events. Histopathology 2009;54:43–54.CrossRefGoogle ScholarPubMed
Hirano, T, Franzen, B, Kato, H, Ebihara, Y, Auer, G.Genesis of squamous cell lung carcinoma. Sequential changes of proliferation, DNA ploidy, and p53 expression. Am J Pathol 1994;144:296–302.Google ScholarPubMed
Pendleton, N, Dixon, GR, Burnett, HE, et al. Expression of proliferating cell nuclear antigen (PCNA) in dysplasia of the bronchial epithelium. J Pathol 1993;170:169–72.CrossRefGoogle ScholarPubMed
Boers, JE, ten Velde, GP, Thunnissen, FB.P53 in squamous metaplasia: a marker for risk of respiratory tract carcinoma. Am J Respir Crit Care Med 1996;153:411–6.CrossRefGoogle ScholarPubMed
Schlake, G, Muller, KM.Carcinogenesis in bronchial epithelium: an immunohistochemical evaluation of preneoplastic lesions. Virchows Arch 2003;443:291.Google Scholar
Meert, AP, Martin, B, Verdebout, JM, et al. EGFR, c-erbB-2 and ki-67 in NSCLC and preneoplastic bronchial lesions. Anticancer Res 2006;26:135–8.Google ScholarPubMed
Tan, DF, Huberman, JA, Hyland, A, et al. MCM2 – a promising marker for premalignant lesions of the lung: a cohort study. BMC Cancer 2001;1:6.CrossRefGoogle ScholarPubMed
Khuri, FR, Lee, JS, Lippman, SM, et al. Modulation of proliferating cell nuclear antigen in the bronchial epithelium of smokers. Cancer Epidemiol Biomarkers Prev 2001;10:311–8.Google ScholarPubMed
Lee, JJ, Liu, D, Lee, JS, et al. Long-term impact of smoking on lung epithelial proliferation in current and former smokers. J Natl Cancer Inst 2001;93:1081–8.CrossRefGoogle ScholarPubMed
Tormanen, U, Nuorva, K, Soini, Y, Paakko, P.Apoptotic activity is increased in parallel with the metaplasia-dysplasia-carcinoma sequence of the bronchial epithelium. Br J Cancer 1999;79:996–1002.CrossRefGoogle ScholarPubMed
Sato, M, Shames, DS, Gazdar, AF, Minna, JD.A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol 2007;2:327–43.CrossRefGoogle ScholarPubMed
Sozzi, G, Miozzo, M, Donghi, R, et al. Deletions of 17p and p53 mutations in preneoplastic lesions of the lung. Cancer Res 1992;52:6079–82.Google ScholarPubMed
Sundaresan, V, Ganly, P, Hasleton, P, et al. p53 and chromosome 3 abnormalities, characteristic of malignant lung tumours, are detectable in preinvasive lesions of the bronchus. Oncogene 1992;7:1989–97.Google ScholarPubMed
Bennett, WP, Colby, TV, Travis, WD, et al. p53 protein accumulates frequently in early bronchial neoplasia. Cancer Res 1993;53:4817–22.Google ScholarPubMed
Walker, C, Robertson, LJ, Myskow, MW, Pendleton, N, Dixon, GR.p53 expression in normal and dysplastic bronchial epithelium and in lung carcinomas. Br J Cancer 1994;70:297–303.CrossRefGoogle ScholarPubMed
Fontanini, G, Vignati, S, Bigini, D, et al. Human non-small cell lung cancer: p53 protein accumulation is an early event and persists during metastatic progression. J Pathol 1994;174:23–31.CrossRefGoogle ScholarPubMed
Katabami, M, Dosaka-Akita, H, Honma, K, et al. p53 and Bcl-2 expression in pneumoconiosis-related pre-cancerous lesions and lung cancers: frequent and preferential p53 expression in pneumoconiotic bronchiolar dysplasias. Int J Cancer 1998;75:504–11.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Brambilla, E, Gazzeri, S, Lantuejoul, S, et al. p53 mutant immunophenotype and deregulation of p53 transcription pathway (Bcl2, Bax, and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res 1998;4:1609–18.Google ScholarPubMed
Lonardo, F, Rusch, V, Langenfeld, J, Dmitrovsky, E, Klimstra, DS.Overexpression of cyclins D1 and E is frequent in bronchial preneoplasia and precedes squamous cell carcinoma development. Cancer Res 1999;59:2470–6.Google Scholar
Martin, B, Verdebout, JM, Mascaux, C, et al. Expression of p53 in preneoplastic and early neoplastic bronchial lesions. Oncol Rep 2002;9:223–9.Google ScholarPubMed
Satoh, Y, Ishikawa, Y, Nakagawa, K, Hirano, T, Tsuchiya, E.A follow-up study of progression from dysplasia to squamous cell carcinoma with immunohistochemical examination of p53 protein overexpression in the bronchi of ex-chromate workers. Br J Cancer 1997;75:678–83.CrossRefGoogle ScholarPubMed
Vahakangas, KH, Samet, JM, Metcalf, RA, et al. Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 1992;339:576–80.CrossRefGoogle ScholarPubMed
Kohno, H, Hiroshima, K, Toyozaki, T, Fujisawa, T, Ohwada, H.p53 mutation and allelic loss of chromosome 3p, 9p of preneoplastic lesions in patients with nonsmall cell lung carcinoma. Cancer 1999;85:341–7.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Franklin, WA, Gazdar, AF, Haney, J, et al. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J Clin Invest 1997;100:2133–7.CrossRefGoogle ScholarPubMed
Chung, GT, Sundaresan, V, Hasleton, P, et al. Clonal evolution of lung tumors. Cancer Res 1996;56:1609–14.Google ScholarPubMed
Sozzi, G, Miozzo, M, Pastorino, U, et al. Genetic evidence for an independent origin of multiple preneoplastic and neoplastic lung lesions. Cancer Res 1995;55:135–40.Google ScholarPubMed
Boyle, JO, Lonardo, F, Chang, JH, et al. Multiple high-grade bronchial dysplasia and squamous cell carcinoma: concordant and discordant mutations. Clin Cancer Res 2001;7:259–66.Google ScholarPubMed
Massion, PP, Taflan, PM, Jamshedur, Rahman SM, et al. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 2003;63:7113–21.Google ScholarPubMed
Walker, C, Robertson, L, Myskow, M, Dixon, G.Expression of the BCL-2 protein in normal and dysplastic bronchial epithelium and in lung carcinomas. Br J Cancer 1995;72:164–9.CrossRefGoogle ScholarPubMed
Mascaux, C, Bex, F, Martin, B, et al. The role of NPM, p14arf and MDM2 in precursors of bronchial squamous cell carcinoma. Eur Respir J 2008;32:678–86.CrossRefGoogle ScholarPubMed
Brambilla, E, Gazzeri, S, Moro, D, et al. Alterations of Rb pathway (Rb-p16INK4-cyclin D1) in preinvasive bronchial lesions. Clin Cancer Res 1999;5:243–50.Google Scholar
Breuer, RH, Snijders, PJ, Sutedja, GT, et al. Expression of the p16(INK4a) gene product, methylation of the p16(INK4a) promoter region and expression of the polycomb-group gene BMI-1 in squamous cell lung carcinoma and premalignant endobronchial lesions. Lung Cancer 2005;48:299–306.CrossRefGoogle ScholarPubMed
Jeanmart, M, Lantuejoul, S, Fievet, F, et al. Value of immunohistochemical markers in preinvasive bronchial lesions in risk assessment of lung cancer. Clin Cancer Res 2003;9:2195–203.Google ScholarPubMed
Toyooka, S, Maruyama, R, Toyooka, KO, et al. Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. Int J Cancer 2003;103:153–60.CrossRefGoogle ScholarPubMed
Belinsky, SA, Nikula, KJ, Palmisano, WA, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 1998;95:11891–6.CrossRefGoogle Scholar
Lamy, A, Sesboue, R, Bourguignon, J, et al. Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. Int J Cancer 2002;100:189–93.CrossRefGoogle ScholarPubMed
Thiberville, L, Payne, P, Vielkinds, J, et al. Evidence of cumulative gene losses with progression of premalignant epithelial lesions to carcinoma of the bronchus. Cancer Res 1995;55:5133–9.Google ScholarPubMed
Kishimoto, Y, Sugio, K, Hung, JY, et al. Allele-specific loss in chromosome 9p loci in preneoplastic lesions accompanying non-small-cell lung cancers. J Natl Cancer Inst 1995;87:1224–9.CrossRefGoogle ScholarPubMed
Wistuba, II, Behrens, C, Milchgrub, S, et al. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 1999;18:643–50.CrossRefGoogle ScholarPubMed
Sawada, M, Inase, N, Imai, M, et al. Chromosome 9p deletion in squamous metaplasia in cystic lesion of the lung. Respirology 2003;8:239–42.CrossRefGoogle ScholarPubMed
Rusch, V, Klimstra, D, Linkov, I, Dmitrovsky, E.Aberrant expression of p53 or the epidermal growth factor receptor is frequent in early bronchial neoplasia and coexpression precedes squamous cell carcinoma development. Cancer Res 1995;55:1365–72.Google ScholarPubMed
Piyathilake, CJ, Frost, AR, Manne, U, et al. Differential expression of growth factors in squamous cell carcinoma and precancerous lesions of the lung. Clin Cancer Res 2002;8:734–44.Google ScholarPubMed
Franklin, WA, Veve, R, Hirsch, FR, Helfrich, BA, Bunn, PA Jr.Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol 2002;29:3–14.CrossRefGoogle ScholarPubMed
Meert, AP, Martin, B, Verdebout, JM, Ninane, V, Sculier, JP.Does c-erbB-2 play a role in the first steps of lung carcinogenesis?Anticancer Res 2005;25:2005–8.Google ScholarPubMed
Merrick, DT, Kittelson, J, Winterhalder, R, et al. Analysis of c-ErbB1/epidermal growth factor receptor and c-ErbB2/HER-2 expression in bronchial dysplasia: evaluation of potential targets for chemoprevention of lung cancer. Clin Cancer Res 2006;12:2281–8.CrossRefGoogle ScholarPubMed
Massion, PP, Zou, Y, Uner, H, et al. Recurrent genomic gains in preinvasive lesions as a biomarker of risk for lung cancer. PLoS One 2009;4:e5611.CrossRefGoogle ScholarPubMed
Marchetti, A, Martella, C, Felicioni, L, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol 2005;23:857–65.CrossRefGoogle ScholarPubMed
Sugio, K, Kishimoto, Y, Virmani, AK, Hung, JY, Gazdar, AF.K-ras mutations are a relatively late event in the pathogenesis of lung carcinomas. Cancer Res 1994;54:5811–5.Google ScholarPubMed
Tsao, AS, McDonnell, T, Lam, S, et al. Increased phospho-AKT (Ser(473)) expression in bronchial dysplasia: implications for lung cancer prevention studies. Cancer Epidemiol Biomarkers Prev 2003;12:660–4.Google ScholarPubMed
Massion, PP, Taflan, PM, Shyr, Y, et al. Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am J Respir Crit Care Med 2004;170:1088–94.CrossRefGoogle ScholarPubMed
Gazdar, AF, Minna, JD.Angiogenesis and the multistage development of lung cancers. Clin Cancer Res 2000;6:1611–2.Google ScholarPubMed
Fontanini, G, Calcinai, A, Boldrini, L, et al. Modulation of neoangiogenesis in bronchial preneoplastic lesions. Oncol Rep 1999;6:813–7.Google ScholarPubMed
Lantuejoul, S, Constantin, B, Drabkin, H, et al. Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines. J Pathol 2003;200:336–47.CrossRefGoogle ScholarPubMed
Merrick, DT, Haney, J, Petrunich, S, et al. Overexpression of vascular endothelial growth factor and its receptors in bronchial dypslasia demonstrated by quantitative RT-PCR analysis. Lung Cancer 2005;48:31–45.CrossRefGoogle ScholarPubMed
Wistuba, II, Behrens, C, Virmani, AK, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 2000;60:1949–60.Google Scholar
Mascaux, C, Martin, B, Verdebout, JM, Ninane, V, Sculier, JP.COX-2 expression during early lung squamous cell carcinoma oncogenesis. Eur Respir J 2005;26:198–203.CrossRefGoogle ScholarPubMed
Yashima, K, Litzky, LA, Kaiser, L, et al. Telomerase expression in respiratory epithelium during the multistage pathogenesis of lung carcinomas. Cancer Res 1997;57:2373–7.Google ScholarPubMed
Capkova, L, Kalinova, M, Krskova, L, et al. Loss of heterozygosity and human telomerase reverse transcriptase (hTERT) expression in bronchial mucosa of heavy smokers. Cancer 2007;109:2299–307.CrossRefGoogle ScholarPubMed
Shibuya, K, Fujisawa, T, Hoshino, H, et al. Increased telomerase activity and elevated hTERT mRNA expression during multistage carcinogenesis of squamous cell carcinoma of the lung. Cancer 2001;92:849–55.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Lantuejoul, S, Soria, JC, Morat, L, et al. Telomere shortening and telomerase reverse transcriptase expression in preinvasive bronchial lesions. Clin Cancer Res 2005;11:2074–82.CrossRefGoogle ScholarPubMed
Ocejo-Garcia, M, Baokbah, TA, Ashurst, HL, et al. Roles for USF-2 in lung cancer proliferation and bronchial carcinogenesis. J Pathol 2005;206:151–9.CrossRefGoogle ScholarPubMed
Bolon, I, Brambilla, E, Vandenbunder, B, et al. Changes in the expression of matrix proteases and of the transcription factor c-Ets-1 during progression of precancerous bronchial lesions. Lab Invest 1996;75:1–13.Google ScholarPubMed
Cappello, F, Di Stefano, A, David, S, et al. Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer 2006;107:2417–24.CrossRefGoogle ScholarPubMed
Wu, S, Sato, M, Endo, C, et al. hnRNP B1 protein may be a possible prognostic factor in squamous cell carcinoma of the lung. Lung Cancer 2003;41:179–86.CrossRefGoogle ScholarPubMed
Snead, DR, Perunovic, B, Cullen, N, et al. hnRNP B1 expression in benign and malignant lung disease. J Pathol 2003;200:88–94.CrossRefGoogle ScholarPubMed
Smith, SL, Watson, SG, Ratschiller, D, et al. Maspin – the most commonly-expressed gene of the 18q21.3 serpin cluster in lung cancer – is strongly expressed in preneoplastic bronchial lesions. Oncogene 2003;22:8677–87.CrossRefGoogle ScholarPubMed
Martinet, N, Alla, F, Farre, G, et al. Retinoic acid receptor and retinoid X receptor alterations in lung cancer precursor lesions. Cancer Res 2000;60:2869–75.Google ScholarPubMed
Sozzi, G, Tornielli, S, Tagliabue, E, et al. Absence of Fhit protein in primary lung tumors and cell lines with FHIT gene abnormalities. Cancer Res 1997;57:5207–12.Google ScholarPubMed
Sozzi, G, Pastorino, U, Moiraghi, L, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res 1998;58:5032–7.Google ScholarPubMed
Zochbauer-Muller, S, Wistuba, II, Minna, JD, Gazdar, AF.Fragile histidine triad (FHIT) gene abnormalities in lung cancer. Clin Lung Cancer 2000;2:141–5.CrossRefGoogle ScholarPubMed
Geradts, J, Fong, KM, Zimmerman, PV, Minna, JD.Loss of Fhit expression in non-small-cell lung cancer: correlation with molecular genetic abnormalities and clinicopathological features. Br J Cancer 2000;82:1191–7.CrossRefGoogle ScholarPubMed
Fong, KM, Biesterveld, EJ, Virmani, A, et al. FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations. Cancer Res 1997;57:2256–67.Google ScholarPubMed
Tseng, JE, Kemp, BL, Khuri, FR, et al. Loss of Fhit is frequent in stage I non-small cell lung cancer and in the lungs of chronic smokers. Cancer Res 1999;59:4798–803.Google Scholar
Carey, FA, Salter, DM, Kerr, KM, Lamb, D.An investigation into the role of human papillomavirus in endobronchial papillary squamous tumours. Respir Med 1990;84:445–7.CrossRefGoogle ScholarPubMed
Bejui-Thivolet, F, Liagre, N, Chignol, MC, Chardonnet, Y, Patricot, LM.Detection of human papillomavirus DNA in squamous bronchial metaplasia and squamous cell carcinomas of the lung by in situ hybridization using biotinylated probes in paraffin-embedded specimens. Hum Pathol 1990;21:111–6.CrossRefGoogle Scholar
Fasano, M, Sabatini, MT, Wieczorek, R, et al. CD44 and its v6 spliced variant in lung tumors: a role in histogenesis?Cancer 1997;80:34–41.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Wimmel, A, Kogan, E, Ramaswamy, A, Schuermann, M.Variant expression of CD44 in preneoplastic lesions of the lung. Cancer 2001;92:1231–6.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Kato, Y, Hirano, T, Yoshida, K, et al. Frequent loss of E-cadherin and/or catenins in intrabronchial lesions during carcinogenesis of the bronchial epithelium. Lung Cancer 2005;48:323–30.CrossRefGoogle ScholarPubMed
Fisseler-Eckhoff, A, Rothstein, D, Muller, KM.Neovascularization in hyperplastic, metaplastic and potentially preneoplastic lesions of the bronchial mucosa. Virchows Arch 1996;429:95–100.Google ScholarPubMed
Pendleton, N, Dixon, GR, Green, JA, Myskow, MW.Expression of markers of differentiation in normal bronchial epithelium and bronchial dysplasia. J Pathol 1996;178:146–50.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Galateau-Salle, FB, Luna, RE, Horiba, K, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in bronchial squamous preinvasive lesions. Hum Pathol 2000;31:296–305.CrossRefGoogle ScholarPubMed
Sanchez-Mora, N, Cebollero, Presmanes M, Monroy, V, Herranz, Aladro M, Alvarez-Fernandez, E.Expression of histo-blood group antigens in bronchial squamous metaplasia. Eur Respir J 2007;29:268–72.CrossRefGoogle ScholarPubMed
Smith, AL, Hung, J, Walker, L, et al. Extensive areas of aneuploidy are present in the respiratory epithelium of lung cancer patients. Br J Cancer 1996;73:203–9.CrossRefGoogle ScholarPubMed
Romeo, MS, Sokolova, IA, Morrison, LE, et al. Chromosomal abnormalities in non-small cell lung carcinomas and in bronchial epithelia of high-risk smokers detected by multi-target interphase fluorescence in situ hybridization. J Mol Diagn 2003;5:103–12.CrossRefGoogle ScholarPubMed
Jonsson, S, Varella-Garcia, M, Miller, YE, et al. Chromosomal aneusomy in bronchial high-grade lesions is associated with invasive lung cancer. Am J Respir Crit Care Med 2008;177:342–7.CrossRefGoogle ScholarPubMed
Zojer, N, Dekan, G, Ackermann, J, et al. Aneuploidy of chromosome 7 can be detected in invasive lung cancer and associated premalignant lesions of the lung by fluorescence in situ hybridisation. Lung Cancer 2000;28:225–35.CrossRefGoogle Scholar
Pelosi, G, Del Curto, B, Trubia, M, et al. 3q26 Amplification and polysomy of chromosome 3 in squamous cell lesions of the lung: a fluorescence in situ hybridization study. Clin Cancer Res 2007;13:1995–2004.CrossRefGoogle ScholarPubMed
Helfritzsch, H, Junker, K, Bartel, M, Scheele, J.Differentiation of positive autofluorescence bronchoscopy findings by comparative genomic hybridization. Oncol Rep 2002;9:697–701.Google ScholarPubMed
Garnis, C, MacAulay, C, Lam, S, Lam, W.Genetic alteration on 8q distinct from MYC in bronchial carcinoma in situ lesions. Lung Cancer 2004;44:403–4.CrossRefGoogle ScholarPubMed
Mao, L, Lee, JS, Kurie, JM, et al. Clonal genetic alterations in the lungs of current and former smokers. J Natl Cancer Inst 1997;89:857–62.CrossRefGoogle ScholarPubMed
Wistuba, II, Lam, S, Behrens, C, et al. Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst 1997;89:1366–73.CrossRefGoogle ScholarPubMed
Chung, GT, Sundaresan, V, Hasleton, P, Rudd, R, Taylor, R, Rabbitts, PH.Sequential molecular genetic changes in lung cancer development. Oncogene 1995;11:2591–8.Google ScholarPubMed
Hung, J, Kishimoto, Y, Sugio, K, et al. Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma. JAMA 1995;273:558–63.CrossRefGoogle ScholarPubMed
Russo, AL, Thiagalingam, A, Pan, H, et al. Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer. Clin Cancer Res 2005;11:2466–70.CrossRefGoogle ScholarPubMed
Guo, M, House, MG, Hooker, C, et al. Promoter hypermethylation of resected bronchial margins: a field defect of changes?Clin Cancer Res 2004;10:5131–6.CrossRefGoogle ScholarPubMed
Zhang, L, Lee, JJ, Tang, H, et al. Impact of smoking cessation on global gene expression in the bronchial epithelium of chronic smokers. Cancer Prev Res (Phila Pa) 2008;1:112–8.CrossRefGoogle ScholarPubMed
Chari, R, Lonergan, KM, Ng, RT, MacAulay, C, Lam, WL, Lam, S.Effect of active smoking on the human bronchial epithelium transcriptome. BMC Genomics 2007;8:297.CrossRefGoogle ScholarPubMed
Boelens, MC, van den Berg, A, Fehrmann, RS, et al. Current smoking-specific gene expression signature in normal bronchial epithelium is enhanced in squamous cell lung cancer. J Pathol 2009;218:182–91.CrossRefGoogle ScholarPubMed
Wu, X, Xiao, Z, Chen, Z, et al. Differential analysis of two-dimension gel electrophoresis profiles from the normal-metaplasia-dysplasia-carcinoma tissue of human bronchial epithelium. Pathol Int 2004;54:765–73.CrossRefGoogle ScholarPubMed
Rahman, SM, Shyr, Y, Yildiz, PB, et al. Proteomic patterns of preinvasive bronchial lesions. Am J Respir Crit Care Med 2005;172:1556–62.CrossRefGoogle ScholarPubMed
Mascaux, C, Laes, JF, Anthoine, G, et al. Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur Respir J 2009;33:352–9.CrossRefGoogle ScholarPubMed
Suprun, H, Hjerpe, A, Nassiell, M.A correlative cytologic study of the incidence of pulmonary cancer and other lung diseases associated with squamous metaplasia of the bronchial epithelium. In Niebergs, HE, ed. Prevention and Detection of Cancer: Part 2, Detection. New York: Marcel Dekker, 1980. pp. 1303–20.Google Scholar
Risse, EK, Vooijs, GP, van't Hof, MA.Diagnostic significance of “severe dysplasia” in sputum cytology. Acta Cytol 1988;32:629–34.Google Scholar
Banerjee, AK.Preinvasive lesions of the bronchus. J Thorac Oncol 2009;4:545–51.CrossRefGoogle ScholarPubMed
Bota, S, Auliac, JB, Paris, C, et al. Follow-up of bronchial precancerous lesions and carcinoma in situ using fluorescence endoscopy. Am J Respir Crit Care Med 2001;164:1688–93.CrossRefGoogle ScholarPubMed
Venmans, BJ, van Boxem, TJ, Smit, EF, Postmus, PE, Sutedja, TG.Outcome of bronchial carcinoma in situ. Chest 2000;117:1572–6.CrossRefGoogle ScholarPubMed
Ponticiello, A, Barra, E, Giani, U, Bocchino, M, Sanduzzi, A.P53 immunohistochemistry can identify bronchial dysplastic lesions proceeding to lung cancer: a prospective study. Eur Respir J 2000;15:547–52.CrossRefGoogle ScholarPubMed
Moro-Sibilot, D, Fievet, F, Jeanmart, M, et al. Clinical prognostic indicators of high-grade pre-invasive bronchial lesions. Eur Respir J 2004;24:24–9.CrossRefGoogle ScholarPubMed
George, PJ, Banerjee, AK, Read, CA, et al. Surveillance for the detection of early lung cancer in patients with bronchial dysplasia. Thorax 2007;62:43–50.CrossRefGoogle Scholar
Pasic, A, Vonk-Noordegraaf, A, Risse, EK, Postmus, PE, Sutedja, TG.Multiple suspicious lesions detected by autofluorescence bronchoscopy predict malignant development in the bronchial mucosa in high risk patients. Lung Cancer 2003;41:295–301.CrossRefGoogle ScholarPubMed
Breuer, RH, Pasic, A, Smit, EF, et al. The natural course of preneoplastic lesions in bronchial epithelium. Clin Cancer Res 2005;11:537–43.Google ScholarPubMed
Kurie, JM, Lotan, R, Lee, JJ, et al. Treatment of former smokers with 9-cis-retinoic acid reverses loss of retinoic acid receptor-beta expression in the bronchial epithelium: results from a randomized placebo-controlled trial. J Natl Cancer Inst 2003;95:206–14.CrossRefGoogle ScholarPubMed
Brambilla, E, Moro, D, Veale, D, et al. Basal cell (basaloid) carcinoma of the lung: a new morphologic and phenotypic entity with separate prognostic significance. Hum Pathol 1992;23:993–1003.CrossRefGoogle ScholarPubMed
Flieder, DB, Hammar, S.Common non-small-cell carcinomas and their variants. In Tomashefski JF, CP, Farver, CF, Fraire, AE, eds. Dail and Hammar's Pulmonary Pathology. New York: Springer, 2008. pp. 273–8.Google Scholar
Monica, V, Ceppi, P, Righi, L, et al. Desmocollin-3: a new marker of squamous differentiation in undifferentiated large-cell carcinoma of the lung. Mod Pathol 2009;22:709–17.CrossRefGoogle ScholarPubMed
Wistuba, II, Berry, J, Behrens, C, et al. Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin Cancer Res 2000;6:2604–10.Google ScholarPubMed
Minna, JD, Kurie, JM, Jacks, T.A big step in the study of small cell lung cancer. Cancer Cell 2003;4:163–6.CrossRefGoogle Scholar
Edwards, CW.Pulmonary adenocarcinoma: review of 106 cases and proposed new classification. J Clin Pathol 1987;40:125–35.CrossRefGoogle ScholarPubMed
Stenhouse, G, Fyfe, N, King, G, Chapman, A, Kerr, KM.Thyroid transcription factor 1 in pulmonary adenocarcinoma. J Clin Pathol 2004;57:383–7.CrossRefGoogle ScholarPubMed
Chilosi, M, Murer, B.Mixed adenocarcinomas of the lung: place in new proposals in classification, mandatory for target therapy. Arch Pathol Lab Med 2010;134:55–65.Google ScholarPubMed
Giangreco, A, Groot, KR, Janes, SM.Lung cancer and lung stem cells: strange bedfellows?Am J Respir Crit Care Med 2007;175:547–53.CrossRefGoogle ScholarPubMed
Reynolds, SD, Giangreco, A, Power, JH, Stripp, BR.Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 2000;156:269–78.CrossRefGoogle ScholarPubMed
Yatabe, Y, Mitsudomi, T, Takahashi, T.TTF-1 expression in pulmonary adenocarcinomas. Am J Surg Pathol 2002;26:767–73.CrossRefGoogle ScholarPubMed
Tanaka, H, Yanagisawa, K, Shinjo, K, et al. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res 2007;67:6007–11.CrossRefGoogle ScholarPubMed
Yatabe, Y, Kosaka, T, Takahashi, T, Mitsudomi, T.EGFR mutation is specific for terminal respiratory unit type adenocarcinoma. Am J Surg Pathol 2005;29:633–9.CrossRefGoogle ScholarPubMed
Kerr, KM, Fraire, AE, Pugatch, B.Atypical adenomatous hyperplasia. In Travis, WD, Brambilla, E, Müller-Hemelink, HK, eds. World Health Organization Classification of Tumours Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2004. pp. 73–5.Google Scholar
Rossie, R.Die Narbenkrebse der Lungen. Schweiz Med Wochenschr 1943;73:1200–3.Google Scholar
Friedrich, G.Lungenkrebse auf dem Boden pleuranaher Narben. Virchows Arch 1939;304:230–47.CrossRefGoogle Scholar
Spencer, H.Lung scar cancer. In Shimosato, YMM, Nettesheim, P, eds. Morphogenesis of Lung Cancer. Boca Raton, FL: CRC, 1982.Google Scholar
Carroll, R.The influence of lung scars on primary lung cancer. J Pathol Bacteriol 1962;83:293–7.CrossRefGoogle ScholarPubMed
Raeburn, C, Spencer, H.A study of the origin and development of lung cancer. Thorax 1953;8:1–10.CrossRefGoogle ScholarPubMed
Auerbach, O, Garfinkel, L, Parks, VR.Scar cancer of the lung: increase over a 21 year period. Cancer 1979;43:636–42.3.0.CO;2-7>CrossRefGoogle Scholar
Bakris, GL, Mulopulos, GP, Korchik, R, et al. Pulmonary scar carcinoma. A clinicopathologic analysis. Cancer 1983;52:493–7.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Edwards, C, Carlile, A.Scar adenocarcinoma of the lung: a light and electron microscopic study. J Clin Pathol 1986;39:423–7.CrossRefGoogle ScholarPubMed
Shimosato, Y, Suzuki, A, Hashimoto, T, et al. Prognostic implications of fibrotic focus (scar) in small peripheral lung cancers. Am J Surg Pathol 1980;4:365–73.CrossRefGoogle Scholar
Shimosato, Y, Kodama, T, Kameya, T.Morphogenesis of peripheral type adenocarcioma of the lung. In Shimosato, YMM, Nettesheim, P, Nettesheim, P, eds. Morphogenesis of Lung Cancer. Boca Raton, FL: CRC, 1982. pp. 65–90.Google Scholar
Yanagisawa, M.A histopathological study of proliferative changes of the epithelial components of the lung. A contribution to the histogenesis of pulmonary carcinoma (in Japanese). Jpn J Cancer Clin 1959;5:667–80.Google Scholar
Weng, SY, Tsuchiya, E, Kasuga, T, Sugano, H.Incidence of atypical bronchioloalveolar cell hyperplasia of the lung: relation to histological subtypes of lung cancer. Virchows Arch A Pathol Anat Histopathol 1992;420:463–71.CrossRefGoogle ScholarPubMed
Meyer, EC, Liebow, AA.Relationship of interstitial pneumonia honeycombing and atypical epithelial proliferation to cancer of the lung. Cancer 1965;18:322–51.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Miller, RR, Nelems, B, Evans, KG, Müller, NL, Ostrow, DN.Glandular neoplasia of the lung. A proposed analogy to colonic tumors. Cancer 1988;61:1009–14.3.0.CO;2-L>CrossRefGoogle Scholar
Miller, RR.Bronchioloalveolar cell adenomas. Am J Surg Pathol 1990;14:904–12.CrossRefGoogle ScholarPubMed
Nakanishi, K.Alveolar epithelial hyperplasia and adenocarcinoma of the lung. Arch Pathol Lab Med 1990;114:363–8.Google ScholarPubMed
Carey, FA, Wallace, WA, Fergusson, RJ, Kerr, KM, Lamb, D.Alveolar atypical hyperplasia in association with primary pulmonary adenocarcinoma: a clinicopathological study of 10 cases. Thorax 1992;47:1041–3.CrossRefGoogle ScholarPubMed
Ullmann, R, Bongiovanni, M, Halbwedl, I, et al. Bronchiolar columnar cell dysplasia – genetic analysis of a novel preneoplastic lesion of peripheral lung. Virchows Arch 2003;442:429–36.Google ScholarPubMed
Pankiewicz, W, Sulewska, A, Niklinska, W, et al. Immunoexpression of P16INK4a, Rb and TP53 proteins in bronchiolar columnar cell dysplasia (BCCD) in lungs resected due to primary non-small cell lung cancer. Folia Histochem Cytobiol 2008;46:89–96.CrossRefGoogle ScholarPubMed
Colby, TV, Noguchi, M, Henschke, C.Adenocarcinoma. In Travis, WD, Brambilla, E, Müller-Hermelink, HK, eds. World Health Organization of Classification of Tumours Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2004. pp. 35–44.Google Scholar
Kerr, KM.Pulmonary adenocarcinomas: classification and reporting. Histopathology 2009;54:12–27.CrossRefGoogle ScholarPubMed
Nakahara, R, Yokose, T, Nagai, K, Nishiwaki, Y, Ochiai, A.Atypical adenomatous hyperplasia of the lung: a clinicopathological study of 118 cases including cases with multiple atypical adenomatous hyperplasia. Thorax 2001;56:302–5.CrossRefGoogle ScholarPubMed
Kitagawa, H, Goto, A, Niki, T, et al. Lung adenocarcinoma associated with atypical adenomatous hyperplasia. A clinicopathological study with special reference to smoking and cancer multiplicity. Pathol Int 2003;53:823–7.CrossRefGoogle ScholarPubMed
Kitamura, H, Kameda, Y, Ito, T, et al. Cytodifferentiation of atypical adenomatous hyperplasia and bronchioloalveolar lung carcinoma: immunohistochemical and ultrastructural studies. Virchows Arch 1997;431:415–24.CrossRefGoogle ScholarPubMed
Kitamura, H, Kameda, Y, Ito, T, Hayashi, H.Atypical adenomatous hyperplasia of the lung. Implications for the pathogenesis of peripheral lung adenocarcinoma. Am J Clin Pathol 1999;111:610–22.CrossRefGoogle ScholarPubMed
Mori, M, Kaji, M, Tezuka, F, Takahashi, T.Comparative ultrastructural study of atypical adenomatous hyperplasia and adenocarcinoma of the human lung. Ultrastruct Pathol 1998;22:459–66.CrossRefGoogle ScholarPubMed
Osanai, M, Igarashi, T, Yoshida, Y.Unique cellular features in atypical adenomatous hyperplasia of the lung: ultrastructural evidence of its cytodifferentiation. Ultrastruct Pathol 2001;25:367–73.CrossRefGoogle ScholarPubMed
Kodama, T, Biyajima, S, Watanabe, S, Shimosato, Y.Morphometric study of adenocarcinomas and hyperplastic epithelial lesions in the peripheral lung. Am J Clin Pathol 1986;85:146–51.CrossRefGoogle ScholarPubMed
Kitamura, H, Kameda, Y, Nakamura, N, et al. Proliferative potential and p53 overexpression in precursor and early stage lesions of bronchioloalveolar lung carcinoma. Am J Pathol 1995;146:876–87.Google ScholarPubMed
Kitamura, H, Kameda, Y, Nakamura, N, et al. Atypical adenomatous hyperplasia and bronchoalveolar lung carcinoma. Analysis by morphometry and the expressions of p53 and carcinoembryonic antigen. Am J Surg Pathol 1996;20:553–62.CrossRefGoogle ScholarPubMed
Koga, T, Hashimoto, S, Sugio, K, et al. Lung adenocarcinoma with bronchioloalveolar carcinoma component is frequently associated with foci of high-grade atypical adenomatous hyperplasia. Am J Clin Pathol 2002;117:464–70.CrossRefGoogle ScholarPubMed
Sterner, DJ, Mori, M, Roggli, VL, Fraire, AE.Prevalence of pulmonary atypical alveolar cell hyperplasia in an autopsy population: a study of 100 cases. Mod Pathol 1997;10:469–73.Google Scholar
Yokose, T, Ito, Y, Ochiai, A.High prevalence of atypical adenomatous hyperplasia of the lung in autopsy specimens from elderly patients with malignant neoplasms. Lung Cancer 2000;29:125–30.CrossRefGoogle ScholarPubMed
Yokose, T, Doi, M, Tanno, K, Yamazaki, K, Ochiai, A.Atypical adenomatous hyperplasia of the lung in autopsy cases. Lung Cancer 2001;33:155–61.CrossRefGoogle ScholarPubMed
Flieder, DB.Recent advances in the diagnosis of adenocarcinoma: the impact of lung cancer screening on histopathologists. Curr Diag Pathol 2004;10:269–78.CrossRefGoogle Scholar
Jensen-Taubman, SM, Steinberg, SM, Linnoila, RI.Bronchiolization of the alveoli in lung cancer: pathology, patterns of differentiation and oncogene expression. Int J Cancer 1998;75:489–96.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Popper, HH, Juettner-Smolle, FM, Pongratz, MG.Micronodular hyperplasia of type II pneumocytes – a new lung lesion associated with tuberous sclerosis. Histopathology 1991;18:347–54.CrossRefGoogle ScholarPubMed
Lantuejoul, S, Ferretti, G, Negoescu, A, Parent, B, Brambilla, E.Multifocal alveolar hyperplasia associated with lymphangioleiomyomatosis in tuberous sclerosis. Histopathology 1997;30:570–5.CrossRefGoogle ScholarPubMed
Muir, TE, Leslie, KO, Popper, H, et al. Micronodular pneumocyte hyperplasia. Am J Surg Pathol 1998;22:465–72.CrossRefGoogle ScholarPubMed
Kobashi, Y, Sugiu, T, Mouri, K, Irei, T, Nakata, M, Oka, M.Multifocal micronodular pneumocyte hyperplasia associated with tuberous sclerosis: differentiation from multiple atypical adenomatous hyperplasia. Jpn J Clin Oncol 2008;38:451–4.CrossRefGoogle ScholarPubMed
Minami, Y, Matsuno, Y, Iijima, T, et al. Prognostication of small-sized primary pulmonary adenocarcinomas by histopathological and karyometric analysis. Lung Cancer 2005;48:339–48.CrossRefGoogle ScholarPubMed
Noguchi, M, Morikawa, A, Kawasaki, M, et al. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer 1995;75:2844–52.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Yokose, T, Suzuki, K, Nagai, K, et al. Favorable and unfavorable morphological prognostic factors in peripheral adenocarcinoma of the lung 3 cm or less in diameter. Lung Cancer 2000;29:179–88.CrossRefGoogle ScholarPubMed
Suzuki, K, Yokose, T, Yoshida, J, et al. Prognostic significance of the size of central fibrosis in peripheral adenocarcinoma of the lung. Ann Thorac Surg 2000;69:893–7.CrossRefGoogle ScholarPubMed
Sakurai, H, Maeshima, A, Watanabe, S, et al. Grade of stromal invasion in small adenocarcinoma of the lung: histopathological minimal invasion and prognosis. Am J Surg Pathol 2004;28:198–206.CrossRefGoogle ScholarPubMed
Morinaga, S, Shimosato, Y.Microcancer of the bronchus and lung: pathology of the microadenocarcinoma in the periphery of the lung. (In Japanese). Pathol Clin Med 1987;5S:74–80.Google Scholar
Kodama, T, Nichiyama, H, Nichiwaki, Y.Histopathological study of adenocarcinoma and hyperplastic epithelial lesion of the lung (in Japanese, English abstract). Haigan (Lung Cancer) 1988;28:325–33.CrossRefGoogle Scholar
Chapman, AD, Kerr, KM.The association between atypical adenomatous hyperplasia and primary lung cancer. Br J Cancer 2000;83:632–6.CrossRefGoogle ScholarPubMed
Kerr, KM, Devereux, G, Chapman, AD.Is survival after surgical resection of lung cancer influenced by the presence of atypical adenomatous hyperplasia (AAH)?J Thorac Oncol 2007;2(Suppl. 4):S401–2.CrossRefGoogle Scholar
Kishi, K, Homma, S, Kurosaki, A, et al. Multiple atypical adenomatous hyperplasia with synchronous multiple primary bronchioloalveolar carcinomas. Intern Med 2002;41:474–7.CrossRefGoogle ScholarPubMed
Seki, M, Akasaka, Y.Multiple lung adenocarcinomas and AAH treated by surgical resection. Lung Cancer 2007;55:237–40.CrossRefGoogle ScholarPubMed
Shoji, T, Isowa, N, Hasegawa, S, et al. Solitary atypical adenomatous hyperplasia in the lung of a 17-year-old man with spontaneous pneumothorax. Respiration 2003;70:303–5.CrossRefGoogle ScholarPubMed
Kodama, K, Higashiyama, M, Takami, K, et al. Synchronous pulmonary atypical adenomatous hyperplasia and metastatic osteosarcoma in a young female. Jpn J Thorac Cardiovasc Surg 2004;52:357–9.CrossRefGoogle Scholar
Travis, WD, Linnoila, RI, Horowitz, M.Pulmonary nodules resembling bronchioloalveolar carcinoma in adolescent cancer patients. Modern Pathol 1998;1:372–7.Google Scholar
Takigawa, N, Segawa, Y, Nakata, M, et al. Clinical investigation of atypical adenomatous hyperplasia of the lung. Lung Cancer 1999;25:115–21.CrossRefGoogle ScholarPubMed
Thomas, DH, Attanoos, RL, Gibbs, AR.Coexistent atypical adenomatous hyperplasia, primary lung adenocarcinoma and pleural mesothelioma in an asbestos-exposed subject. Histopathology 2004;45:540–2.CrossRefGoogle Scholar
Kerr, KM, Foster, CS. Unpublished data.
Chapman, AD, Thetford, D, Kerr, KM.Pathological and clinical investigation of pulmonary atypical adenomatous hyperplasia and its association with primary lung adenocarcinoma. Lung Cancer 2000;29(S1):215–6.CrossRefGoogle Scholar
Nadav, Y, Pastorino, U, Nicholson, AG.Multiple synchronous lung cancers and atypical adenomatous hyperplasia in Li-Fraumeni syndrome. Histopathology 1998;33:52–4.CrossRefGoogle ScholarPubMed
Goto, A, Nakajima, J, Hara, K, Niki, T, Fukayama, M.Lung adenocarcinoma associated with familial adenomatous polyposis. Clear cell carcinoma with beta-catenin accumulation accompanied by atypical adenomatous hyperplasia. Virchows Arch 2005;446:73–7.CrossRefGoogle ScholarPubMed
Yokozaki, M, Kodama, T, Yokose, T, Matsumoto, T, Mukai, K.Differentiation of atypical adenomatous hyperplasia and adenocarcinoma of the lung by use of DNA ploidy and morphometric analysis. Mod Pathol 1996;9:1156–64.Google Scholar
Mori, M, Chiba, R, Takahashi, T.Atypical adenomatous hyperplasia of the lung and its differentiation from adenocarcinoma. Characterization of atypical cells by morphometry and multivariate cluster analysis. Cancer 1993;72:2331–40.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Nakayama, H, Noguchi, M, Tsuchiya, R, Kodama, T, Shimosato, Y.Clonal growth of atypical adenomatous hyperplasia of the lung: cytofluorometric analysis of nuclear DNA content. Modern Pathol 1990;3:314–20.Google ScholarPubMed
Nakanishi, K, Hiroi, S, Kawai, T, Suzuki, M, Torikata, C.Argyrophilic nucleolar-organizer region counts and DNA status in bronchioloalveolar epithelial hyperplasia and adenocarcinoma of the lung. Hum Pathol 1998;29:235–9.CrossRefGoogle ScholarPubMed
Kitaguchi, S, Takeshima, Y, Nishisaka, T, Inai, K.Proliferative activity, p53 expression and loss of heterozygosity on 3p, 9p and 17p in atypical adenomatous hyperplasia of the lung. Hiroshima J Med Sci 1998;47:17–25.Google ScholarPubMed
Kerr, KM, Fyfe, N, Chapman, AD.Cell cycle marker MCM2 in peripheral lung adenocarcinoma and its precursors. Lung Cancer 2003;41:S15.Google Scholar
Kerr, KM, Carey, FA, King, G, Lamb, D.Atypical alveolar hyperplasia: relationship with pulmonary adenocarcinoma, p53, and c-erbB-2 expression. J Pathol 1994;174:249–56.CrossRefGoogle ScholarPubMed
Hayashi, H, Miyamoto, H, Ito, T, et al. Analysis of p21Waf1/Cip1 expression in normal, premalignant, and malignant cells during the development of human lung adenocarcinoma. Am J Pathol 1997;151:461–70.Google ScholarPubMed
Moll, UM, Erster, S, Zaika, A.p53, p63 and p73 – solos, alliances and feuds among family members. Biochim Biophys Acta 2001;1552:47–59.Google ScholarPubMed
Sheikh, HA, Fuhrer, K, Cieply, K, Yousem, S.p63 expression in assessment of bronchioloalveolar proliferations of the lung. Mod Pathol 2004;17:1134–40.CrossRefGoogle ScholarPubMed
Wu, M, Orta, L, Gil, J, Li, G, Hu, A, Burstein, DE.Immunohistochemical detection of XIAP and p63 in adenomatous hyperplasia, atypical adenomatous hyperplasia, bronchioloalveolar carcinoma and well-differentiated adenocarcinoma. Mod Pathol 2008;21:553–8.CrossRefGoogle ScholarPubMed
Nakanishi, K, Kawai, T, Kumaki, F, et al. Survivin expression in atypical adenomatous hyperplasia of the lung. Am J Clin Pathol 2003;120:712–9.CrossRefGoogle ScholarPubMed
Kayser, K, Nwoye, JO, Kosjerina, Z, et al. Atypical adenomatous hyperplasia of lung: its incidence and analysis of clinical, glycohistochemical and structural features including newly defined growth regulators and vascularization. Lung Cancer 2003;42:171–82.CrossRefGoogle ScholarPubMed
Akyurek, N, Memis, L, Ekinci, O, Kokturk, N, Ozturk, C.Survivin expression in pre-invasive lesions and non-small cell lung carcinoma. Virchows Arch 2006;449:164–70.CrossRefGoogle ScholarPubMed
Kurasono, Y, Ito, T, Kameda, Y, Nakamura, N, Kitamura, H.Expression of cyclin D1, retinoblastoma gene protein, and p16 MTS1 protein in atypical adenomatous hyperplasia and adenocarcinoma of the lung. An immunohistochemical analysis. Virchows Arch 1998;432:207–15.CrossRefGoogle ScholarPubMed
Licchesi, JD, Westra, WH, Hooker, CM, Herman, JG.Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clin Cancer Res 2008;14:2570–8.CrossRefGoogle ScholarPubMed
Yamasaki, M, Takeshima, Y, Fujii, S, et al. Correlation between genetic alterations and histopathological subtypes in bronchiolo-alveolar carcinoma and atypical adenomatous hyperplasia of the lung. Pathol Int 2000;50:778–85.CrossRefGoogle ScholarPubMed
Pao, W, Miller, VA.Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 2005;23:2556–68.CrossRefGoogle ScholarPubMed
Sequist, LV, Bell, DW, Lynch, TJ, Haber, DA.Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 2007;25:587–95.CrossRefGoogle ScholarPubMed
Kozuki, T, Hisamoto, A, Tabata, M, et al. Mutation of the epidermal growth factor receptor gene in the development of adenocarcinoma of the lung. Lung Cancer 2007;58:30–5.CrossRefGoogle ScholarPubMed
Tang, X, Shigematsu, H, Bekele, BN, et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res 2005;65:7568–72.CrossRefGoogle ScholarPubMed
Sartori, G, Cavazza, A, Bertolini, F, et al. A subset of lung adenocarcinomas and atypical adenomatous hyperplasia-associated foci are genotypically related: an EGFR, HER2, and K-ras mutational analysis. Am J Clin Pathol 2008;129:202–10.CrossRefGoogle ScholarPubMed
Sagawa, M, Saito, Y, Fujimura, S, Linnoila, RI.K-ras point mutation occurs in the early stage of carcinogenesis in lung cancer. Br J Cancer 1998;77:720–3.CrossRefGoogle ScholarPubMed
Ohshima, S, Shimizu, Y, Takahama, M.Detection of c-Ki-ras gene mutation in paraffin sections of adenocarcinoma and atypical bronchioloalveolar cell hyperplasia of human lung. Virchows Arch 1994;424:129–34.CrossRefGoogle ScholarPubMed
Sakamoto, H, Shimizu, J, Horio, Y, et al. Disproportionate representation of KRAS gene mutation in atypical adenomatous hyperplasia, but even distribution of EGFR gene mutation from preinvasive to invasive adenocarcinomas. J Pathol 2007;212:287–94.CrossRefGoogle ScholarPubMed
Kohno, T, Kunitoh, H, Suzuki, K, et al. Association of KRAS polymorphisms with risk for lung adenocarcinoma accompanied by atypical adenomatous hyperplasias. Carcinogenesis 2008;29:957–63.CrossRefGoogle ScholarPubMed
Nakano, H, Soda, H, Takasu, M, et al. Heterogeneity of epidermal growth factor receptor mutations within a mixed adenocarcinoma lung nodule. Lung Cancer 2008;60:136–40.CrossRefGoogle ScholarPubMed
Takigawa, N, Ida, M, Segawa, Y, et al. Expression of cyclooxygenase-2, Fas and Fas ligand in pulmonary adenocarcinoma and atypical adenomatous hyperplasia. Anticancer Res 2003;23:5069–73.Google ScholarPubMed
Hosomi, Y, Yokose, T, Hirose, Y, et al. Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 2000;30:73–81.CrossRefGoogle ScholarPubMed
Nakanishi, K, Kawai, T, Kumaki, F, et al. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 2003;9:1105–11.Google ScholarPubMed
Nakanishi, K, Kumaki, F, Hiroi, S, et al. Mre11 expression in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Arch Pathol Lab Med 2006;130:1330–4.Google ScholarPubMed
Kawai, T, Hiroi, S, Nakanishi, K, Meeker, AK.Telomere length and telomerase expression in atypical adenomatous hyperplasia and small bronchioloalveolar carcinoma of the lung. Am J Clin Pathol 2007;127:254–62.CrossRefGoogle ScholarPubMed
Seki, N, Takasu, T, Mandai, K, et al. Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clin Cancer Res 2002;8:3046–53.Google ScholarPubMed
Nakanishi, K, Matsuo, H, Kanai, Y, et al. LAT1 expression in normal lung and in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Virchows Arch 2006;448:142–50.CrossRefGoogle ScholarPubMed
Tang, X, Liu, D, Shishodia, S, et al. Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer 2006;107:2637–46.CrossRefGoogle ScholarPubMed
Omoto, Y, Kobayashi, Y, Nishida, K, et al. Expression, function, and clinical implications of the estrogen receptor beta in human lung cancers. Biochem Biophys Res Commun 2001;285:340–7.CrossRefGoogle ScholarPubMed
Kerr, KM, MacKenzie, SJ, Ramasami, S, et al. Expression of Fhit, cell adhesion molecules and matrix metalloproteinases in atypical adenomatous hyperplasia and pulmonary adenocarcinoma. J Pathol 2004;203:638–44.CrossRefGoogle ScholarPubMed
Goto, A, Niki, T, Moriyama, S, et al. Immunohistochemical study of Skp2 and Jab1, two key molecules in the degradation of P27, in lung adenocarcinoma. Pathol Int 2004;54:675–81.CrossRefGoogle ScholarPubMed
Ghaffar, H, Sahin, F, Sanchez-Cepedes, M, et al. LKB1 protein expression in the evolution of glandular neoplasia of the lung. Clin Cancer Res 2003;9:2998–3003.Google ScholarPubMed
Mori, M, Tezuka, F, Chiba, R, et al. Atypical adenomatous hyperplasia and adenocarcinoma of the human lung: their heterology in form and analogy in immunohistochemical characteristics. Cancer 1996;77:665–74.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Awaya, H, Takeshima, Y, Amatya, VJ, et al. Loss of expression of E-cadherin and beta-catenin is associated with progression of pulmonary adenocarcinoma. Pathol Int 2005;55:14–8.CrossRefGoogle ScholarPubMed
Kumaki, F, Matsui, K, Kawai, T, et al. Expression of matrix metalloproteinases in invasive pulmonary adenocarcinoma with bronchioloalveolar component and atypical adenomatous hyperplasia. Am J Pathol 2001;159:2125–35.CrossRefGoogle ScholarPubMed
Kitamura, H, Oosawa, Y, Kawano, N, et al. Basement membrane patterns, gelatinase A and tissue inhibitor of metalloproteinase-2 expressions, and stromal fibrosis during the development of peripheral lung adenocarcinoma. Hum Pathol 1999;30:331–8.CrossRefGoogle ScholarPubMed
Iijima, T, Minami, Y, Nakamura, N, et al. MMP-2 activation and stepwise progression of pulmonary adenocarcinoma: analysis of MMP-2 and MMP-9 with gelatin zymography. Pathol Int 2004;54:295–301.CrossRefGoogle ScholarPubMed
Rao, SK, Fraire, AE.Alveolar cell hyperplasia in association with adenocarcinoma of lung. Mod Pathol 1995;8:165–9.Google ScholarPubMed
Awaya, H, Takeshima, Y, Yamasaki, M, Inai, K.Expression of MUC1, MUC2, MUC5AC, and MUC6 in atypical adenomatous hyperplasia, bronchioloalveolar carcinoma, adenocarcinoma with mixed subtypes, and mucinous bronchioloalveolar carcinoma of the lung. Am J Clin Pathol 2004;121:644–53.CrossRefGoogle ScholarPubMed
Niho, S, Yokose, T, Suzuki, K, et al. Monoclonality of atypical adenomatous hyperplasia of the lung. Am J Pathol 1999;154:249–54.CrossRefGoogle ScholarPubMed
Ullmann, R, Bongiovanni, M, Halbwedl, I, et al. Is high-grade adenomatous hyperplasia an early bronchioloalveolar adenocarcinoma?J Pathol 2003;201:371–6.CrossRefGoogle ScholarPubMed
Marchetti, A, Pellegrini, S, Bertacca, G, et al. FHIT and p53 gene abnormalities in bronchioloalveolar carcinomas. Correlations with clinicopathological data and K-ras mutations. J Pathol 1998;184:240–6.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Takamochi, K, Ogura, T, Yokose, T, et al. Molecular analysis of the TSC1 gene in adenocarcinoma of the lung. Lung Cancer 2004;46:271–81.CrossRefGoogle ScholarPubMed
Nomori, H, Horio, H, Naruke, T, et al. A case of multiple atypical adenomatous hyperplasia of the lung detected by computed tomography. Jpn J Clin Oncol 2001;31:514–6.CrossRefGoogle ScholarPubMed
Anami, Y, Matsuno, Y, Yamada, T, et al. A case of double primary adenocarcinoma of the lung with multiple atypical adenomatous hyperplasia. Pathol Int 1998;48:634–40.CrossRefGoogle ScholarPubMed
Aoyagi, Y, Yokose, T, Minami, Y, et al. Accumulation of losses of heterozygosity and multistep carcinogenesis in pulmonary adenocarcinoma. Cancer Res 2001;61:7950–4.Google ScholarPubMed
Gradowski, JF, Mantha, GS, Hunt, JL, Dacic, S.Molecular alterations in atypical adenomatous hyperplasia occurring in benign and cancer-bearing lungs. Diagn Mol Pathol 2007;16:87–90.CrossRefGoogle ScholarPubMed
Morandi, L, Asioli, S, Cavazza, A, Pession, A, Damiani, S.Genetic relationship among atypical adenomatous hyperplasia, bronchioloalveolar carcinoma and adenocarcinoma of the lung. Lung Cancer 2007;56:35–42.CrossRefGoogle ScholarPubMed
Yohena, T, Yoshino, I, Takenaka, T, et al. Relationship between the loss of heterozygosity and tobacco smoking in pulmonary adenocarcinoma. Oncol Res 2007;16:333–9.CrossRefGoogle ScholarPubMed
Licchesi, JD, Westra, WH, Hooker, CM, et al. Epigenetic alteration of Wnt pathway antagonists in progressive glandular neoplasia of the lung. Carcinogenesis 2008;29:895–904.CrossRefGoogle ScholarPubMed
Chiosea, S, Jelezcova, E, Chandran, U, et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 2007;67:2345–50.CrossRefGoogle ScholarPubMed
Hanada, S, Maeshima, A, Matsuno, Y, et al. Expression profile of early lung adenocarcinoma: identification of MRP3 as a molecular marker for early progression. J Pathol 2008;216:75–82.CrossRefGoogle ScholarPubMed
Shimada, A, Kano, J, Ishiyama, T, et al. Establishment of an immortalized cell line from a precancerous lesion of lung adenocarcinoma, and genes highly expressed in the early stages of lung adenocarcinoma development. Cancer Sci 2005;96:668–75.CrossRefGoogle ScholarPubMed
Logan, PM, Miller, RR, Evans, K, Muller, NL.Bronchogenic carcinoma and coexistent bronchioloalveolar cell adenomas. Assessment of radiologic detection and follow-up in 28 patients. Chest 1996;109:713–7.CrossRefGoogle ScholarPubMed
Suzuki, K, Nagai, K, Yoshida, J, et al. The prognosis of resected lung carcinoma associated with atypical adenomatous hyperplasia: a comparison of the prognosis of well-differentiated adenocarcinoma associated with atypical adenomatous hyperplasia and intrapulmonary metastasis. Cancer 1997;79:1521–6.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
IASLCTextbook on Prevention and Early Detection of Lung Cancer. London: Martin Dunitz, 2005.Google Scholar
Sone, S, Takashima, S, Li, F, et al. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 1998;351:1242–5.CrossRefGoogle ScholarPubMed
Nawa, T, Nakagawa, T, Kusano, S, et al. Lung cancer screening using low-dose spiral CT: results of baseline and 1-year follow-up studies. Chest 2002;122:15–20.CrossRefGoogle ScholarPubMed
Kawakami, S, Sone, S, Takashima, S, et al. Atypical adenomatous hyperplasia of the lung: correlation between high-resolution CT findings and histopathologic features. Eur Radiol 2001;11:811–4.CrossRefGoogle ScholarPubMed
Park, CM, Goo, JM, Lee, HJ, et al. CT findings of atypical adenomatous hyperplasia in the lung. Korean J Radiol 2006;7:80–6.CrossRefGoogle ScholarPubMed
Sone, S, Matsumoto, T, Honda, T, et al. HRCT features of small peripheral lung carcinomas detected in a low dose CT screening program. Acad Radiol 2010;17:75–83.CrossRefGoogle Scholar
Ikeda, K, Awai, K, Mori, T, et al. Differential diagnosis of ground-glass opacity nodules: CT number analysis by three-dimensional computerized quantification. Chest 2007;132:984–90.CrossRefGoogle ScholarPubMed
Ishikawa, H, Koizumi, N, Morita, T, et al. Ultrasmall pulmonary opacities on multidetector-row high-resolution computed tomography: a prospective radiologic-pathologic examination. J Comput Assist Tomogr 2005;29:621–5.CrossRefGoogle ScholarPubMed
Nakata, M, Sawada, S, Saeki, H, et al. Prospective study of thoracoscopic limited resection for ground-glass opacity selected by computed tomography. Ann Thorac Surg 2003;75:1601–5; discussion 1605–6.CrossRefGoogle ScholarPubMed
Thunnissen, FB.Sputum examination for early detection of lung cancer. J Clin Pathol 2003;56:805–10.CrossRefGoogle ScholarPubMed
Hirsch, FR, Franklin, WA, Gazdar, AF, Bunn, PA Jr.Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res 2001;7:5–22.Google Scholar
Anglim, PP, Alonzo, TA, Laird-Offringa, IA.DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer 2008;7:81.CrossRefGoogle ScholarPubMed
Kemp, RA, Reinders, DM, Turic, B.Detection of lung cancer by automated sputum cytometry. J Thorac Oncol 2007;2:993–1000.CrossRefGoogle ScholarPubMed
Katz, RL, Zaidi, TM, Fernandez, RL, et al. Automated detection of genetic abnormalities combined with cytology in sputum is a sensitive predictor of lung cancer. Mod Pathol 2008;21:950–60.CrossRefGoogle ScholarPubMed
Chan, HP, Lewis, C, Thomas, PS.Exhaled breath analysis: novel approach for early detection of lung cancer. Lung Cancer 2009;63:164–8.CrossRefGoogle ScholarPubMed
Brower, V.Biomarker studies abound for early detection of lung cancer. J Natl Cancer Inst 2009;101:11–3.CrossRefGoogle ScholarPubMed
van Zandwijk, N, Hirsch, FR.Chemoprevention of lung cancer: current status and future prospects. Lung Cancer 2003;42 Suppl 1:S71–9.
Keith, RL.Chemoprevention of lung cancer. Proc Am Thorac Soc 2009;6:187–93.CrossRefGoogle ScholarPubMed
Wistuba, II.Genetics of preneoplasia: lessons from lung cancer. Curr Mol Med 2007;7:3–14.CrossRefGoogle ScholarPubMed
Liu, G, Miller, DP, Zhou, W, et al. Differential association of the codon 72 p53 and GSTM1 polymorphisms on histological subtype of non-small cell lung carcinoma. Cancer Res 2001;61:8718–22.Google ScholarPubMed
Kiyohara, C, Otsu, A, Shirakawa, T, Fukuda, S, Hopkin, JM.Genetic polymorphisms and lung cancer susceptibility: a review. Lung Cancer 2002;37:241–56.CrossRefGoogle ScholarPubMed
Liu, G, Zhou, W, Christiani, DC.Molecular epidemiology of non-small cell lung cancer. Semin Respir Crit Care Med 2005;26:265–72.CrossRefGoogle ScholarPubMed
Akopyan, G, Bonavida, B.Understanding tobacco smoke carcinogen NNK and lung tumorigenesis. Int J Oncol 2006;29:745–52.Google ScholarPubMed
Bartsch, H, Dally, H, Popanda, O, Risch, A, Schmezer, P.Genetic risk profiles for cancer susceptibility and therapy response. Recent Results Cancer Res 2007;174:19–36.CrossRefGoogle ScholarPubMed
Schwartz, AG, Prysak, GM, Bock, CH, Cote, ML.The molecular epidemiology of lung cancer. Carcinogenesis 2007;28:507–18.CrossRefGoogle ScholarPubMed
Granata, C, Gambini, C, Balducci, T, et al. Bronchioloalveolar carcinoma arising in congenital cystic adenomatoid malformation in a child: a case report and review on malignancies originating in congenital cystic adenomatoid malformation. Pediatr Pulmonol 1998;25:62–6.3.0.CO;2-Q>CrossRefGoogle Scholar
Ribet, ME, Copin, MC, Soots, JG, Gosselin, BH.Bronchioloalveolar carcinoma and congenital cystic adenomatoid malformation. Ann Thorac Surg 1995;60:1126–8.CrossRefGoogle ScholarPubMed
Kaslovsky, RA, Purdy, S, Dangman, BC, et al. Bronchioloalveolar carcinoma in a child with congenital cystic adenomatoid malformation. Chest 1997;112:548–51.CrossRefGoogle Scholar
Benjamin, DR, Cahill, JL.Bronchioloalveolar carcinoma of the lung and congenital cystic adenomatoid malformation. Am J Clin Pathol 1991;95:889–92.CrossRefGoogle ScholarPubMed
Sheffield, EA, Addis, BJ, Corrin, B, McCabe, MM.Epithelial hyperplasia and malignant change in congenital lung cysts. J Clin Pathol 1987;40:612–4.CrossRefGoogle ScholarPubMed
MacSweeney, F, Papagiannopoulos, K, Goldstraw, P, et al. An assessment of the expanded classification of congenital cystic adenomatoid malformations and their relationship to malignant transformation. Am J Surg Pathol 2003;27:1139–46.CrossRefGoogle ScholarPubMed
Stacher, E, Ullmann, R, Halbwedl, I, et al. Atypical goblet cell hyperplasia in congenital cystic adenomatoid malformation as a possible preneoplasia for pulmonary adenocarcinoma in childhood: a genetic analysis. Hum Pathol 2004;35:565–70.CrossRefGoogle ScholarPubMed
Lantuejoul, S, Nicholson, AG, Sartori, G, et al. Mucinous cells in type 1 pulmonary congenital cystic adenomatoid malformation as mucinous bronchioloalveolar carcinoma precursors. Am J Surg Pathol 2007;31:961–9.CrossRefGoogle ScholarPubMed
Lantuejoul, S, Ferretti, GR, Goldstraw, P, et al. Metastases from bronchioloalveolar carcinomas associated with long-standing type 1 congenital cystic adenomatoid malformations. A report of two cases. Histopathology 2006;48:204–6.CrossRefGoogle ScholarPubMed
Ramos, SG, Barbosa, GH, Tavora, FR, et al. Bronchioloalveolar carcinoma arising in a congenital pulmonary airway malformation in a child: case report with an update of this association. J Pediatr Surg 2007;42:E1–4.CrossRefGoogle Scholar
West, D, Nicholson, AG, Colquhoun, I, Pollock, J.Bronchioloalveolar carcinoma in congenital cystic adenomatoid malformation of lung. Ann Thorac Surg 2007;83:687–9.CrossRefGoogle ScholarPubMed
Guillou, L, Sahli, R, Chaubert, P, et al. Squamous cell carcinoma of the lung in a nonsmoking, nonirradiated patient with juvenile laryngotracheal papillomatosis. Evidence of human papillomavirus-11 DNA in both carcinoma and papillomas. Am J Surg Pathol 1991;15:891–8.CrossRefGoogle Scholar
Yantsos, VA, Farr, GH Jr, McFadden, PM, Emory, WB.Recurrent juvenile-onset laryngotracheal papillomatosis with transformation to squamous cell carcinoma of the lung. South Med J 1999;92:1013–6.CrossRefGoogle ScholarPubMed
Simma, B, Burger, R, Uehlinger, J, et al. Squamous-cell carcinoma arising in a non-irradiated child with recurrent respiratory papillomatosis. Eur J Pediatr 1993;152:776–8.CrossRefGoogle Scholar
DiLorenzo, TP, Tamsen, A, Abramson, AL, Steinberg, BM.Human papillomavirus type 6a DNA in the lung carcinoma of a patient with recurrent laryngeal papillomatosis is characterized by a partial duplication. J Gen Virol 1992;73 (Pt 2):423–8.CrossRefGoogle ScholarPubMed
Popper, HH, el-Shabrawi, Y, Wockel, W, et al. Prognostic importance of human papilloma virus typing in squamous cell papilloma of the bronchus: comparison of in situ hybridization and the polymerase chain reaction. Hum Pathol 1994;25:1191–7.CrossRefGoogle ScholarPubMed
Lele, SM, Pou, AM, Ventura, K, Gatalica, Z, Payne, D.Molecular events in the progression of recurrent respiratory papillomatosis to carcinoma. Arch Pathol Lab Med 2002;126:1184–8.Google Scholar
Go, C, Schwartz, MR, Donovan, DT.Molecular transformation of recurrent respiratory papillomatosis: viral typing and p53 overexpression. Ann Otol Rhinol Laryngol 2003;112:298–302.CrossRefGoogle ScholarPubMed
Bell-Thomson, J, Missier, P, Sommers, SC.Lung carcinoma arising in bronchopulmonary sequestration. Cancer 1979;44:334–9.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Konwaler, BE, Reingold, IM.Carcinoma arising in bronchiectatic cavities. Cancer 1952;5:525–9.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Tonelli, P.A morphologic study of nodular lung carcinomas and their possible pathogenesis from a cluster of non-obstructive bronchiectasis. Lung Cancer 1997;17:135–45.CrossRefGoogle ScholarPubMed
De Perrot, M, Pache, JC, Spiliopoulos, A.Carcinoma arising in congenital lung cysts. J Thorac Cardiovasc Surg 2001;39:184–5.CrossRefGoogle Scholar
Prichard, MG, Brown, PJ, Sterrett, GF.Bronchioloalveolar carcinoma arising in longstanding lung cysts. Thorax 1984;39:545–9.CrossRefGoogle ScholarPubMed
Geevers, EF, Neubuerger, KT, Davis, CL.The pulmonary alveolar lining under various pathologic conditions in man and animals. Am J Pathol 1943;19:913–37.Google Scholar
Bell, ET.Hyperplaisa of the pulmonary alveolar epithelium in disease. Am J Pathol 1943;19:901–11.Google Scholar
Fraire, AE, Greenberg, SD.Carcinoma and diffuse interstitial fibrosis of lung. Cancer 1973;31:1078–86.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Ma, Y, Seneviratne, CK, Koss, M.Idiopathic pulmonary fibrosis and malignancy. Curr Opin Pulm Med 2001;7:278–82.CrossRefGoogle ScholarPubMed
Stack, BH, Choo-Kang, YF, Heard, BE.The prognosis of cryptogenic fibrosing alveolitis. Thorax 1972;27:535–42.CrossRefGoogle ScholarPubMed
Le Jeune, I, Gribbin, J, West, J, et al. The incidence of cancer in patients with idiopathic pulmonary fibrosis and sarcoidosis in the UK. Respir Med 2007;101:2534–40.CrossRefGoogle ScholarPubMed
Matsushita, H, Tanaka, S, Saiki, Y, et al. Lung cancer associated with usual interstitial pneumonia. Pathol Int 1995;45:925–32.CrossRefGoogle ScholarPubMed
Qunn, L, Takemura, T, Ikushima, S, et al. Hyperplastic epithelial foci in honeycomb lesions in idiopathic pulmonary fibrosis. Virchows Arch 2002;441:271–8.CrossRefGoogle ScholarPubMed
Mizushima, Y, Kobayashi, M.Clinical characteristics of synchronous multiple lung cancer associated with idiopathic pulmonary fibrosis. A review of Japanese cases. Chest 1995;108:1272–7.CrossRefGoogle ScholarPubMed
Samet, JM.Does idiopathic pulmonary fibrosis increase lung cancer risk?Am J Respir Crit Care Med 2000;161:1–2.Google ScholarPubMed
Aubry, MC, Myers, JL, Douglas, WW, et al. Primary pulmonary carcinoma in patients with idiopathic pulmonary fibrosis. Mayo Clin Proc 2002;77:763–70.CrossRefGoogle ScholarPubMed
Sakai, S, Ono, M, Nishio, T, et al. Lung cancer associated with diffuse pulmonary fibrosis: CT-pathologic correlation. J Thorac Imaging 2003;18:67–71.CrossRefGoogle ScholarPubMed
Turner-Warwick, M, Lebowitz, M, Burrows, B, Johnson, A.Cryptogenic fibrosing alveolitis and lung cancer. Thorax 1980;35:496–9.CrossRefGoogle ScholarPubMed
Hironaka, M, Fukayama, M.Pulmonary fibrosis and lung carcinoma: a comparative study of metaplastic epithelia in honeycombed areas of usual interstitial pneumonia with or without lung carcinoma. Pathol Int 1999;49:1060–6.CrossRefGoogle ScholarPubMed
Baumgartner, KB, Samet, JM, Stidley, CA, Colby, TV, Waldron, JA.Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1997;155:242–8.CrossRefGoogle ScholarPubMed
Hubbard, R, Venn, A, Lewis, S, Britton, J.Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. Am J Respir Crit Care Med 2000;161:5–8.CrossRefGoogle ScholarPubMed
Kishi, K, Homma, S, Kurosaki, A, Motoi, N, Yoshimura, K.High-resolution computed tomography findings of lung cancer associated with idiopathic pulmonary fibrosis. J Comput Assist Tomogr 2006;30:95–9.CrossRefGoogle ScholarPubMed
Ardies, CM.Inflammation as cause for scar cancers of the lung. Integr Cancer Ther 2003;2:238–46.CrossRefGoogle ScholarPubMed
Daniels, CE, Jett, JR.Does interstitial lung disease predispose to lung cancer?Curr Opin Pulm Med 2005;11:431–7.CrossRefGoogle ScholarPubMed
Kawasaki, H, Ogura, T, Yokose, T, et al. p53 gene alteration in atypical epithelial lesions and carcinoma in patients with idiopathic pulmonary fibrosis. Hum Pathol 2001;32:1043–9.CrossRefGoogle ScholarPubMed
Takahashi, T, Munakata, M, Ohtsuka, Y, et al. Expression and alteration of ras and p53 proteins in patients with lung carcinoma accompanied by idiopathic pulmonary fibrosis. Cancer 2002;95:624–33.CrossRefGoogle ScholarPubMed
Murata, K, Ota, S, Niki, T, et al. p63 – Key molecule in the early phase of epithelial abnormality in idiopathic pulmonary fibrosis. Exp Mol Pathol 2007;83:367–76.CrossRefGoogle ScholarPubMed
Terasaki, Y, Akuta, T, Terasaki, M, et al. Guanine nitration in idiopathic pulmonary fibrosis and its implication for carcinogenesis. Am J Respir Crit Care Med 2006;174:665–73.CrossRefGoogle ScholarPubMed
Calabrese, F, Lunardi, F, Giacometti, C, et al. Overexpression of squamous cell carcinoma antigen in idiopathic pulmonary fibrosis: clinicopathological correlations. Thorax 2008;63:795–802.CrossRefGoogle ScholarPubMed
Bando, M, Takahashi, M, Ohno, S, et al. Torque teno virus DNA titre elevated in idiopathic pulmonary fibrosis with primary lung cancer. Respirology 2008;13:263–9.CrossRefGoogle ScholarPubMed
Demopoulos, K, Arvanitis, DA, Vassilakis, DA, Siafakas, NM, Spandidos, DA.MYCL1, FHIT, SPARC, p16(INK4) and TP53 genes associated to lung cancer in idiopathic pulmonary fibrosis. J Cell Mol Med 2002;6:215–22.CrossRefGoogle ScholarPubMed
Uematsu, K, Yoshimura, A, Gemma, A, et al. Aberrations in the fragile histidine triad (FHIT) gene in idiopathic pulmonary fibrosis. Cancer Res 2001;61:8527–33.Google ScholarPubMed
Ohno, S, Oshikawa, K, Kitamura, S.Clinicopathological analysis of interstitial pneumonia associated with collagen vascular disease in patients with lung cancer. (In Japanese. English abstract.)Nihon Kyobu Shikkan Gakkai Zasshi 1997;35:1324–9.Google Scholar
Yang, Y, Fujita, J, Tokuda, M, Bandoh, S, Ishida, T.Lung cancer associated with several connective tissue diseases: with a review of literature. Rheumatol Int 2001;21:106–11.Google Scholar
Adzic, TN, Pesut, DP, Nagorni-Obradovic, LM, et al. Clinical features of lung cancer in patients with connective tissue diseases: a 10-year hospital based study. Respir Med 2008;102:620–4.CrossRefGoogle ScholarPubMed
Wooten, M.Systemic sclerosis and malignancy: a review of the literature. South Med J 2008;101:59–62.CrossRefGoogle ScholarPubMed
Peters-Golden, M, Wise, RA, Hochberg, M, Stevens, MB, Wigley, FM.Incidence of lung cancer in systemic sclerosis. J Rheumatol 1985;12:1136–9.Google ScholarPubMed
Talbott, JH, Barrocas, M.Carcinoma of the lung in progressive systemic sclerosis: a tabular review of the literature and a detailed report of the roentgenographic changes in two cases. Semin Arthritis Rheum 1980;9:191–217.CrossRefGoogle Scholar
Fujita, J, Tokuda, M, Bandoh, S, et al. Primary lung cancer associated with polymyositis/dermatomyositis, with a review of the literature. Rheumatol Int 2001;20:81–4.CrossRefGoogle ScholarPubMed
Bin, J, Bernatsky, S, Gordon, C, et al. Lung cancer in systemic lupus erythematosus. Lung Cancer 2007;56:303–6.CrossRefGoogle ScholarPubMed
Matteson, EL, Hickey, AR, Maguire, L, Tilson, HH, Urowitz, MB.Occurrence of neoplasia in patients with rheumatoid arthritis enrolled in a DMARD Registry. Rheumatoid Arthritis Azathioprine Registry Steering Committee. J Rheumatol 1991;18:809–14.Google Scholar
Bernatsky, S, Joseph, L, Boivin, JF, et al. The relationship between cancer and medication exposures in systemic lupus erythaematosus: a case-cohort study. Ann Rheum Dis 2008;67:74–9.CrossRefGoogle ScholarPubMed
Pontifex, EK, Hill, CL, Roberts-Thomson, P.Risk factors for lung cancer in patients with scleroderma: a nested case-control study. Ann Rheum Dis 2007;66:551–3.CrossRefGoogle ScholarPubMed
Chatterjee, S, Dombi, GW, Severson, RK, Mayes, MD.Risk of malignancy in scleroderma: a population-based cohort study. Arthritis Rheum 2005;52:2415–24.CrossRefGoogle ScholarPubMed
Selikoff, IJ, Hammond, EC, Churg, J.Asbestos exposure, smoking, and neoplasia. JAMA 1968;204:106–12.CrossRefGoogle ScholarPubMed
Henderson, DW, de Klerk, NH, Hammar, S.Asbestos and lung cancer: is it attributable to asbestosis or asbestos fibre burden? In Corrin, B, ed. Pathology of Lung Tumours. Edinburgh: Churchill-Livingstone, 1997. pp. 83–118.Google Scholar
Hammar, S, Dodson, R.Asbestos. In Tomashefski, JF CP, Farver, CF, Fraire, AE, eds. Dail and Hammar's Pulmonary Pathology. New York: Springer, 2008. pp. 950–1031.CrossRefGoogle Scholar
Auerbach, O, Garfinkel, L, Parks, VR, et al. Histologic type of lung cancer and asbestos exposure. Cancer 1984;54:3017–21.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Churg, A.Lung cancer cell type and asbestos exposure. JAMA 1985;253:2984–5.CrossRefGoogle ScholarPubMed
Henderson, DW, Rödelsperger, K, Woitowitz, HJ, Leigh, J.After Helsinki: a multidisciplinary review of the relationship between asbestos exposure and lung cancer, with emphasis on studies published during 1997–2004. Pathology 2004;36:517–50.CrossRefGoogle ScholarPubMed
Asbestos. asbestosis. and cancer: the Helsinki criteria for diagnosis and attribution. Scand J Work Environ Health 1997;23:311–6.Google Scholar
Gibbs, A, Attanoos, RL, Churg, A, Weill, H.The “Helsinki criteria” for attribution of lung cancer to asbestos exposure: how robust are the criteria?Arch Pathol Lab Med 2007;131:181–3.Google ScholarPubMed
Ruosaari, ST, Nymark, PE, Aavikko, MM, et al. Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis 2008;29:913–7.CrossRefGoogle ScholarPubMed
Nymark, P, Wikman, H, Hienonen-Kempas, T, Anttila, S.Molecular and genetic changes in asbestos-related lung cancer. Cancer Lett 2008;265:1–15.CrossRefGoogle ScholarPubMed
Nymark, P, Kettunen, E, Aavikko, M, et al. Molecular alterations at 9q33.1 and polyploidy in asbestos-related lung cancer. Clin Cancer Res 2009;15:468–75.CrossRefGoogle ScholarPubMed
Kettunen, E, Aavikko, M, Nymark, P, et al. DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure. Br J Cancer 2009;100:1336–42.CrossRefGoogle ScholarPubMed
Ruosaari, S, Hienonen-Kempas, T, Puustinen, A, et al. Pathways affected by asbestos exposure in normal and tumour tissue of lung cancer patients. BMC Med Genomics 2008;1:55.CrossRefGoogle ScholarPubMed
Toyokuni, S.Mechanisms of asbestos-induced carcinogenesis. Nagoya J Med Sci 2009;71:1–10.Google ScholarPubMed
Mossman, BT, Churg, A.Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 1998;157:1666–80.CrossRefGoogle ScholarPubMed
Diseases associated with exposure to silica and nonfibrous silicate minerals. Silicosis and Silicate Disease Committee. Arch Pathol Lab Med 1988;112:673–720.Google Scholar
Churg, A, Green, F.Occupational lung disease. In Thurlbeck, W, Churg, AM, eds. Pathology of the Lung, 2nd ed. New York: Thieme, 1995. pp. 851–929.Google Scholar
Weill, H, McDonald, JC.Exposure to crystalline silica and risk of lung cancer: the epidemiological evidence. Thorax 1996;51:97–102.CrossRefGoogle ScholarPubMed
Otsuki, T, Maeda, M, Murakami, S, et al. Immunological effects of silica and asbestos. Cell Mol Immunol 2007;4:261–8.Google ScholarPubMed
Brown, T.Silica exposure, smoking, silicosis and lung cancer – complex interactions. Occup Med (Lond) 2009;59:89–95.CrossRefGoogle ScholarPubMed
Lacasse, Y, Martin, S, Gagne, D, Lakhal, L.Dose-response meta-analysis of silica and lung cancer. Cancer Causes Control 2009;20:925–33.CrossRefGoogle ScholarPubMed
Sin, DD, Man, SF, McWilliams, A, Lam, S.Surfactant protein D and bronchial dysplasia in smokers at high risk of lung cancer. Chest 2008;134:582–8.CrossRefGoogle ScholarPubMed
Sozzi, G, Oggionni, M, Alasio, L, et al. Molecular changes track recurrence and progression of bronchial precancerous lesions. Lung Cancer 2002;37:267–70.CrossRefGoogle ScholarPubMed
Snijders, PJ, Breuer, RH, Sutedja, TG, et al. Elevated hTERT mRNA levels: a potential determinant of bronchial squamous cell carcinoma (in situ). Int J Cancer 2004;109:412–7.CrossRefGoogle Scholar
Salaun, M, Sesboue, R, Moreno-Swirc, S, et al. Molecular predictive factors for progression of high-grade preinvasive bronchial lesions. Am J Respir Crit Care Med 2008;177:880–6.CrossRefGoogle ScholarPubMed
Suzuki, A.Growth characteristics of peripheral type adenocarcinoma in terms of roentgenologic findings. In Shimosato, YMM, Nettesheim, P, eds. Morphogenesis of Lung Cancer. Boca Raton: CRC, 1982. pp. 91–110.Google Scholar
Madri, JA, Carter, D.Scar cancers of the lung: origin and significance. Hum Pathol 1984;15:625–31.CrossRefGoogle ScholarPubMed
el-Torkey, M, Giltman, LI, Dabbous, M.Collagens in scar carcinoma of the lung. Am J Pathol 1985;121:322–6.Google ScholarPubMed
Barsky, SH, Huang, SJ, Bhuta, S.The extracellular matrix of pulmonary scar carcinomas is suggestive of a desmoplastic origin. Am J Pathol 1986;124:412–9.Google ScholarPubMed
Dohmoto, K, Fujita, J, Ohtsuki, Y, et al. Synchronous four primary lung adenocarcinoma associated with multiple atypical adenomatous hyperplasia. Lung Cancer 2000;27:125–30.CrossRefGoogle ScholarPubMed
Takamochi, K, Ogura, T, Suzuki, K, et al. Loss of heterozygosity on chromosomes 9q and 16p in atypical adenomatous hyperplasia concomitant with adenocarcinoma of the lung. Am J Pathol 2001;159:1941–8.CrossRefGoogle ScholarPubMed
Suzuki, K, Takahashi, K, Yoshida, J, et al. Synchronous double primary lung carcinomas associated with multiple atypical adenomatous hyperplasia. Lung Cancer 1998;19:131–9.CrossRefGoogle ScholarPubMed
Slebos, RJ, Baas, IO, Clement, MJ, et al. p53 alterations in atypical alveolar hyperplasia of the human lung. Hum Pathol 1998;29:801–8.CrossRefGoogle ScholarPubMed
Pueblitz, S, Hieger, LR.Expression of p53 and CEA in atypical adenomatous hyperplasia of the lung. Am J Surg Pathol 1997;21:867–8.CrossRefGoogle ScholarPubMed
Yoshida, Y, Shibata, T, Kokubu, A, et al. Mutations of the epidermal growth factor receptor gene in atypical adenomatous hyperplasia and bronchioloalveolar carcinoma of the lung. Lung Cancer 2005;50:1–8.CrossRefGoogle ScholarPubMed
Sakuma, Y, Matsukuma, S, Yoshihara, M, et al. Epidermal growth factor receptor gene mutations in atypical adenomatous hyperplasias of the lung. Mod Pathol 2007;20:967–73.CrossRefGoogle ScholarPubMed
Ikeda, K, Nomori, H, Ohba, Y, et al. Epidermal growth factor receptor mutations in multicentric lung adenocarcinomas and atypical adenomatous hyperplasias. J Thorac Oncol 2008;3:467–71.CrossRefGoogle ScholarPubMed
Cooper, CA, Carby, FA, Bubb, VJ, et al. The pattern of K-ras mutation in pulmonary adenocarcinoma defines a new pathway of tumour development in the human lung. J Pathol 1997;181:401–4.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Westra, WH, Baas, IO, Hruban, RH, et al. K-ras oncogene activation in atypical alveolar hyperplasias of the human lung. Cancer Res 1996;56:2224–8.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×