Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T17:54:05.844Z Has data issue: false hasContentIssue false

22 - Diatoms as indicators of paleoceanographic events

from Part IV - Diatoms as indicators in marine and estuarine environments

Published online by Cambridge University Press:  05 June 2012

Richard W. Jordan
Affiliation:
Yamagata University
Catherine E. Stickley
Affiliation:
University of Tromsø
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction – the importance of pre-Quaternary diatoms in paleoceanography

The marine system is vast, involving a highly diverse range of habitats; from coastal lagoons, fjords, bays, and estuaries, out over the shelf to the open ocean thousands of kilometers from any landmass. The Pacific Ocean alone covers an area of nearly 170 million km2. In total, the world's oceans cover approximately two-thirds of the Earth's surface and since marine diatoms are the dominant marine primary producers, contributing about 40% of the total primary production in the modern oceans (Tréguer et al., 1995) and over 50% of organic carbon burial in marine sediments (Falkowski et al., 2004), they are key players in the marine biological carbon pump. Therefore, the study of both living and fossil marine diatoms is important for many reasons other than just their intrinsic interest – from understanding (past) marine ecological systems, through biogeochemical cycling, to links with carbon dioxide (CO2) (e.g. Harrison, 2000), and the causes and effects of rapid climate change (e.g. Pollock, 1997).

Diatoms preserved in marine sediments are commonly used to reconstruct paleoenvironments and paleoceanographic events for the Holocene and Quaternary, but they are equally as valuable for paleoceanographic reconstructions of time periods much earlier than this – in fact for as far back as their fossil record allows, i.e. the Early Cretaceous (Gersonde & Harwood, 1990; Harwood & Gersonde, 1990).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 424 - 453
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrantes, F. F. (1991). Variability of upwelling off NW Africa during the latest Quaternary: diatom evidence. Paleoceanography, 6, 431–60.CrossRefGoogle Scholar
Abrantes, F. (2001). Assessing the Ethmodiscus ooze problem: new perspective from a study of an eastern equatorial Atlantic core. Deep-Sea Research I, 48, 125–35.CrossRefGoogle Scholar
Abrantes, F., Lopes, C., Mix, A., & Pisias, N. (2007). Diatoms in southeast Pacific surface sediments reflect environmental properties. Quaternary Science Reviews, 26 (1–2), 155–69.CrossRefGoogle Scholar
Akhmetiev, A. M. (1996). Ecological crises of the Paleogene and Neogene in extratropical Eurasia and their putative causes. Paleontological Journal, 30, 738–48.Google Scholar
Akhmetiev, M. A. (2007). Paleocene and Eocene floras of Russia and adjacent regions: climatic conditions of their development. Paleontological Journal, 41, 1032–9.CrossRefGoogle Scholar
Akhmetiev, M. A. & Beniamovski, A. N. (2009). Paleogene floral assemblages around epicontinental seas and straits in northern central Eurasia: proxies for climatic and paleogeographic evolution. Geologica Acta, 7 (1–2), 297–309.Google Scholar
Alexandre, A., Meunier, J.-D., Colin, F., & Koud, J. M. (1997). Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochemica Acta, 61, 677–82.CrossRefGoogle Scholar
Alhama, F., Lopez-Sanchez, J. F., Gonzalez-Fernandez, C. F., Dickens, G. R., & Barron, J. A. (1997). A rapidly deposited pennate diatom ooze in upper Miocene–lower Pliocene sediment beneath the North Pacific Polar Front. Marine Micropaleontology, 31, 177–82.Google Scholar
Alldredge, A. L. & Gotschalk, C. C. (1989). Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocity and formation of diatom aggregates. Deep-Sea Research, 26, 159–71.CrossRefGoogle Scholar
Anderson, J. B., Wellner, J. S., Bohaty, S., Manley, P. L., & Wise, S. W. Jr. (2006). Antarctic Shallow Drilling Project provides key core samples. EOS, Transactions, American Geophysical Union, 87 (39), DOI:10.1029/2006EO390003.CrossRef
Andrews, G. W. (1986). Evolutionary trends in the marine diatom genus Delphineis G.W. Andrews. In Proceedings of the 9th International Diatom Symposium, ed. Round, F.E., Bristol & Königstein: Biopress Ltd. & Koeltz Scientific Books, pp. 197–206.Google Scholar
Andrews, G. W. & Stoelzel, V. A. (1982). Morphology and evolutionary significance of Perissonoë, a new marine diatom genus. In Proceedings of the 7th International Diatom Symposium, ed. Mann, D.G., Königstein: Koeltz Scientific Books, pp. 225–40.Google Scholar
Armand, L. K. & Leventer, A. (2010). Palaeo sea ice distribution and reconstruction derived from the geological record. In:Sea Ice An Introduction to its: Physics, Chemistry and Biology, 2nd Edition, ed. Thomas, D. N. & Dieckmann, G. S., Oxford: Wiley-Blackwell, pp. 469–530.Google Scholar
Backman, J. & Moran, K. (2009). Expanding the Cenozoic paleoceanographic record in the central Arctic Ocean: IODP Expedition 302: synthesis. Central European Journal of Geosciences, 1, 157–75, DOI:10.2478/v10085–009-0015–6.Google Scholar
Backman, J., Moran, K., McInroy, D. B., Mayer, L. A., & the Expedition 302 Scientists (2006). Proceedings of the Integrated Ocean Drilling Program, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.2006.CrossRef
Baldauf, J. G. & Barron, J. A. (1990). Evolution of biosiliceous sedimentation patterns – Eocene through Quaternary: paleoceanographic response to polar cooling. In Geological History of the Polar Oceans: Arctic versus Antarctic, ed. Bleil, U, J. & Thiede, J., Dordrecht: Kluwer Academic Publishers, pp. 575–607.CrossRefGoogle Scholar
Barker, P. F., Filippelli, G. M., Florindo, F., Martin, E. E., & Scher, H. D. (2007). Onset and role of the Antarctic Circumpolar Current. Deep-Sea Research II, 54, 2388–98.CrossRefGoogle Scholar
Barrett, P. J. & Ricci, C. A. (eds.) (2000). Studies from the Cape Roberts Project, Ross Sea, Antarctica, Scientific Results of CRP-2/2A, Parts I and II. Terra Antartica, 7, 211–665.Google Scholar
Barron, J. A. (1985a). Diatom biostratigraphy of the CESAR 6 core, Alpha Ridge. Geological Survey of Canada, Paper 84–22, Report 10, 137–48.
Barron, J. A. (1985b). Miocene to Holocene planktic diatoms. In Plankton Stratigraphy, Volume 2, ed. Bolli, H. M., Saunders, J. B., & Perch-Nielsen, K., Cambridge: Cambridge University Press, pp. 763–809.Google Scholar
Barron, J. A. (1993). Diatoms. In Fossil Prokaryotes and Protists, ed. Lipps, J. H., Boston: Blackwell Scientific Publishers, pp. 155–67.Google Scholar
Barron, J. A. (2003). Appearance and extinction of planktonic diatoms during the past 18 m.y. in the Pacific and Southern oceans. Diatom Research, 18, 203–24.CrossRefGoogle Scholar
Barron, J. A. & Baldauf, J. G. (1989). Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous sediments. In Productivity of the Oceans: Present and Past, ed. Berger, W. H., Smetacek, V. S., & Wefer, G., New York, NY: John Wiley, pp. 341–54.Google Scholar
Barron, J. A. & Baldauf, J. G. (1995). Cenozoic marine diatom biostratigraphy and applications to paleoclimatology and paleoceanography. In Siliceous Microfossils, ed. Blome, C. D., Whalen, P. M., & , K. M. Reed, The Paleontological Society Short Course 8, pp. 107–18.
Barron, J. A. & Mahood, A. D. (1993). Exceptionally well-preserved early Oligocene diatoms from glacial sediments of Prydz Bay, East Antarctica. Micropaleontology, 39, 29–45.CrossRefGoogle Scholar
Belt, S. T., Allard, W. G., Massé, G., Robert, J.-M., & Rowland, S. J. (2000). Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers. Geochimica et Cosmochimica Acta, 64, 3839–51.CrossRefGoogle Scholar
Belt, S. T., Massé, G., Rowland, S. J., et al. (2007). A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry, 38, 16–27.CrossRefGoogle Scholar
Berger, W. H. (2007). Cenozoic cooling, Antarctic nutrient pump, and the evolution of whales. Deep-Sea Research II, 54, 2399–421.CrossRefGoogle Scholar
Berggren, W. A. (2002). Paleogene of the eastern Alps. PALAIOS, 17, 631–2.2.0.CO;2>CrossRefGoogle Scholar
Bigelow, P. R. & Alexander, C. G. (2000). Diatoms on the cirri of tropical barnacles. Journal of the Marine Biological Association of the United Kingdom, 80, 737–8.CrossRefGoogle Scholar
Boden, P. & Backman, J. (1996). A laminated sediment sequence from the northern north Atlantic Ocean and its climatic record. Geology, 24, 507–10.2.3.CO;2>CrossRefGoogle Scholar
Bramlette, M. N. (1946). The Monterey Formation of California and the origin of its siliceous rocks. United States Geological Survey Professional Paper, 212.
Brand, L. R., Esperante, R., Chadwick, A. V., Poma Porras, O., & Alomía, M. (2004). Fossil whale preservation implies high diatom accumulation rate in the Miocene–Pliocene Pisco Formation of Peru. Geology, 32, 165–8.CrossRefGoogle Scholar
Brun, J. & Tempère, J. (1889). Diatomées fossiles du Japon. Espèces Marines et Nouvelles des Calcaires Argileux de Sendai et de Yedo. Mémoires de la Société de Physique et d'Histoire Naturelle de Genève, 30 (9): 1--75.
Brzezinski, M., Phillip, D., Chavez, P., Frederich, G., & Dugdale, R. (1997). Silica production in the Monterey, California, upwelling system. Limnology and Oceanography, 42, 1694–705.CrossRefGoogle Scholar
Burns, V. M., & Burns, R. G. (1978). Authigenic todorokite and phillipsite inside deep-sea manganese nodules. American Mineralogist, 63, 827–31.Google Scholar
Cervato, C. & Burckle, L. (2003). Pattern of first and last appearance in diatoms: oceanic circulation and the position of the Polar fronts during the Cenozoic. Paleoceanography, 18, 1055, DOI:10.1029/2002PA000805.CrossRef
Chambers, P. M. (1996). Late Cretaceous and Palaeocene marine diatom floras. Unpublished Ph. D thesis, University College London.Google Scholar
Chang, K.-H. & Park, S.-O. (2008). Early Cretaceous tectonism and diatoms in Korea. Acta Geologica Sinica, 82 (6), 5–61.Google Scholar
Chapman, F. (1906). On concretionary nodules with plant-remains found in the Old Bed of the Yarra at S. Melbourne; and their resemblance to the calcareous nodules known as ‘coal-balls’. Geological Magazine, 5th Series, 3, 553–6.CrossRefGoogle Scholar
Chin, K., Bloch, J., Sweet, A., et al. (2008). Life in a temperate polar sea: a unique taphonomic window on the structure of a Late Cretaceous Arctic marine ecosystem. Proceedings of the Royal Society B-Biological Sciences, 275, 2675–85.CrossRefGoogle Scholar
Clarke, J. A., Ksepka, D. T., Stucchi, M., et al. (2007). Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy of Sciences of the USA, 104, 11545–50.CrossRefGoogle ScholarPubMed
Coale, K. H., Johnson, K. S., Fitzwater, S. E., et al. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495–501.CrossRefGoogle ScholarPubMed
Cody, R. D., Levy, R., & Harwood, D. M. (2008). Thinking outside the zone: high-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 260 (1–2), 92–121.CrossRefGoogle Scholar
Cortese, G., Gersonde, R., Hillenbrand, C.-D., & Kuhn, G. (2004). Opal sedimentation shifts in the world ocean over the last 15 Myr. Earth and Planetary Science Letters, 224, 509–27.CrossRefGoogle Scholar
Croll, D. A. & Holmes, R. W. (1982). A note on the occurrence of diatoms on the feathers of diving seabirds. The Auk, 99, 765–6.Google Scholar
Cushing, D. H. (1971). Upwelling and the production of fish. In Advances in Marine Biology, ed. Russell, F.S. & Yonge, M., London: Academic Press Inc., vol. 9, pp. 255–334.Google Scholar
Darwin, C. (1846). An account of the fine dust which falls on vessels in the Atlantic Ocean. Quarterly Journal of the Geological Society (London), 2, 26–30.CrossRefGoogle Scholar
Davies, A., Kemp, A. E. S., & Pike, J. (2009). Late Cretaceous seasonal ocean variability from the Arctic. Nature, 460, 254–9.CrossRefGoogle ScholarPubMed
DeConto, R., Pollard, D., & Harwood, D. (2007). Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography, 22, PA3214, DOI:10.1029/2006PA001350.CrossRef
DeConto, R. M., Pollard, D., Wilson, P. A., et al. (2008). Thresholds for Cenozoic bipolar glaciation. Nature, 455, 652–6.CrossRefGoogle Scholar
Rocha, C. L. (2006). Opal-based proxies of paleoenvironmental conditions. Global Biogeochemical Cycles, 20, GB4S09, DOI:10.1029/2005GB002664.CrossRef
Rocha, C. L., Brzezinski, M. A., DeNiro, M. J., & Shemesh, A. (1998). Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 395, 680–3.CrossRefGoogle Scholar
Dickens, G. & Barron, J. A. (1997). A rapidly deposited pennate diatom ooze in upper Miocene-lower Pliocene sediment beneath the North Pacific Polar Front. Marine Micropaleontology, 31, 177–82.CrossRefGoogle Scholar
Diekmann, B., Fälker, M., & Kuhn, G. (2003). Environmental history of the south-eastern South Atlantic since the middle Miocene: evidence from the sedimentological records of ODP sites 1088 and 1092. Sedimentology, 50, 511–29.CrossRefGoogle Scholar
Diester-Haass, L. & Zahn, R. (2001). Paleoproductivity increase at the Eocene-Oligocene climatic transition: ODP/DSDP sites 763 and 592. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 153–70.CrossRefGoogle Scholar
Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., & Karl, D. M. (2008). Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: historical perspective and recent observations. Progress in Oceanography, 76, 2–38.CrossRefGoogle Scholar
Dupont, L. M., Donner, B., Vidal, L., Pérez, E. M., & Wefer, G. (2005). Linking desert evolution and coastal upwelling: Pliocene climate change in Namibia. Geology, 33, 461–4.CrossRefGoogle Scholar
Dzinoridze, R. N., Jousé, A. P., Koroleva-Golikova, G. S., et al. (1978). Diatom and radiolarian Cenozoic stratigraphy, Norwegian Basin; DSDP Leg 38. Initial Reports of the Deep Sea Drilling Project, 38–39–40–41 Supplement, 289–427.CrossRef
Edwards, A. R. (1991). The Oamaru Diatomite. New Zealand Geological Survey Paleontological Bulletin, 64, 1–260.Google Scholar
Ehrenberg, C. H. (1844). Untersuchungen über die kleinsten Lebensformen im Quellenlande des Euphrats und Araxes, so wie über eine an neuen Formen sehr reiche, marine Tripelbildung von den Bermuda-Inseln. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der der Königlichen Preussischen Akademie. Berlin: Akademie der Wissenschaften, pp. 253–75.Google Scholar
Ehrlich, A. & Moshkovitz, S. (1982). On the occurrence of Eocene marine diatoms in Israel. Acta Geologica Academiae Scientiarum Hungaricae, 25, 23–37.Google Scholar
Eldrett, J. S., Greenwood, D. R., Harding, I. C., & Huber, M. (2009). Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature, 459, 969–73.CrossRefGoogle ScholarPubMed
Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E., & Roberts, A. P. (2007). Continental ice in Greenland during the Eocene and Oligocene. Nature, 466, 176–9.CrossRefGoogle Scholar
,Expedition 318 Scientists (2010). Wilkes Land glacial history: Cenozoic East Antarctic Ice Sheet evolution from Wilkes Land margin sediments. IODP Preliminary Report, 318. DOI:10.2204/iodp.pr.318.2010.CrossRef
Falkowski, P. G., Katz, M. E., Knoll, A. H., et al. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305, 354–60.CrossRefGoogle ScholarPubMed
Fenner, J. (1985). Late Cretaceous to Oligocene planktic diatoms. In Plankton Stratigraphy, vol. 2, ed. Bolli, H. M., Saunders, J. B., & Perch-Nielsen, K., Cambridge: Cambridge University Press, pp. 713–62.Google Scholar
Fenner, J. (1991). Taxonomy, stratigraphy, and paleoceanographic implications of Paleocene diatoms. Proceedings of the Ocean Drilling Program, Scientific Results, 114, 123–54.Google Scholar
Fenner, J. (1994). Diatoms of the Fur Formation, their taxonomy and biostratigraphic interpretation. Results from the Harre borehole, Denmark. Aarhus Geoscience, 1, 99–163.Google Scholar
Folger, D. W., Burckle, L. H., & Heezen, B. C. (1967). Opal phytoliths in a North Atlantic dust fall. Science, 155 (3767), 1243–4.CrossRefGoogle Scholar
Fordyce, R. E. (1980). Whale evolution and Oligocene Southern Ocean environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 31, 319–36.CrossRefGoogle Scholar
Fourtanier, E. (1991). Paleocene and Eocene diatom biostratigraphy of eastern Indian Ocean Site 752, ODP Leg 121. Proceedings of the Ocean Drilling Program, Scientific Results, 121, 171–87.Google Scholar
Fourtanier, E. & Oscarson, R. (1994). Ultrastructure of some interesting and stratigraphically significant diatom taxa from the upper Paleocene to lower Eocene sediments of ODP Site 752, eastern Indian Ocean. Proceedings of the 11th International Diatom Symposium, ed. J. P. Kociolek, Memoirs of the California Academy of Sciences, no. 17, 399–410.
Gaarder, K. R., & Hasle, G. R. (1962). On the assumed symbiosis between diatoms and coccolithophorids in Brenneckella. Nytt Magasin for Botanikk, 9, 145–9.Google Scholar
Galeotti, S., Brinkhuis, H., & Huber, M. (2004). Record of post-K-T boundary millennial-scale cooling from the western Tethys: a smoking gun for the impact-winter hypothesis? Geology, 32, 529–32.CrossRefGoogle Scholar
Gardner, J. V. & Burckle, L. H. (1975). Upper Pleistocene Ethmodiscus rex oozes from the eastern equatorial Atlantic. Micropaleontology, 21 (2), 236–42.CrossRefGoogle Scholar
Gersonde, R. & Harwood, D. M. (1990). Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1. Vegetative cells. Proceedings of the Ocean Drilling Program, Scientific Results, 113, 403–25.Google Scholar
Gingerich, P. D., Wells, N. A., Russell, D. E., & Shah, S. M. I. (1983). Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science, 220, 403–6.CrossRefGoogle ScholarPubMed
Girard, V., Saint Martin, S., Saint Martin, J.-P., et al. (2009). Exceptional preservation of marine diatoms in upper Albian amber. Geology, 37, 83–6.CrossRefGoogle Scholar
Girard, V., Schmidt, A. R., Saint Martin, S., et al. (2008). Evidence for marine microfossils from amber. Proceedings of the National Academy of Sciences of the USA, 105 (45), 17426–9.CrossRefGoogle ScholarPubMed
Gladenkov, A. (1999). A new lower Oligocene zone for the North Pacific diatom scale. In Proceedings of the Fourteenth International Diatom Symposium, ed. Mayama, S., Idei, M., & Koizumi, I., Königstein: Koeltz Scientific Books, pp. 581–90.Google Scholar
Gombos, A. M. (1980). The early history of the diatom family Asterolampraceae. Bacillaria, 3, 227–72.Google Scholar
Gombos, A. M. (1982). Early and middle Eocene diatom evolutionary events. Bacillaria, 5, 225–42.Google Scholar
Gombos, A. M. (1983). Middle Eocene diatoms from the South Atlantic. Initial Reports of the Deep Sea Drilling Project, 71, 565–81.Google Scholar
Gombos, A. M. (1984). Late Paleocene diatoms in the Cape Basin. Initial Reports of the Deep Sea Drilling Project, 73, 495–511.Google Scholar
Gombos, A. M. (1987). Middle Eocene diatoms from the North Atlantic, Deep Sea Drilling Project Site 605. Initial Reports of the Deep Sea Drilling Project, 93, 793–9.Google Scholar
Greville, R. K. (1859). Descriptions of Diatomaceae observed in Californian Guano. Quarterly Journal of Microscopical Science, 7, 155–66.CrossRefGoogle Scholar
Greville, R. K. (1861). Descriptions of new and rare diatoms. Series I. Transactions of the Microscopical Society of London, New Series, 9, 39–45.CrossRefGoogle Scholar
Greville, R. K. (1863). Descriptions of new and rare diatoms. Series IX. Transactions of the Microscopical Society of London, New Series, 11, 63–76.CrossRefGoogle Scholar
Grigorov, I., Pearce, R. B., & Kemp, A. E. S. (2002). Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP Leg 177, Site 1093. Deep-Sea Research II: Topical Studies in Oceanography, 49, 3391–407.CrossRefGoogle Scholar
Hajós, M. & Stradner, H. (1975). Late Cretaceous Archaeomonadaceae, Diatomaceae, and Silicoflagellatae from the South Pacific Ocean, Deep Sea Drilling Project, Leg 29, Site 275. Initial Reports of the Deep Sea Drilling Project, 29, 913–1009.Google Scholar
Hanna, G. D. (1932). The diatoms of Sharktooth Hill, Kern County, California. Proceedings of the California Academy of Sciences, Ser. 4, 20, 161–263.Google Scholar
Harper, M. A. (1999). Diatoms as markers of atmospheric transport. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., Cambridge: Cambridge University Press, pp. 429–35.CrossRefGoogle Scholar
Harrison, K. G. (2000). Role of increased marine silica input on paleo-pCO2. Paleoceanography, 15 (3), 292–8.CrossRefGoogle Scholar
Harwood, D. M. (1988). Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula. Geological Society of America, Memoirs, 169, 55–129.CrossRefGoogle Scholar
Harwood, D. M. & Bohaty, S. M. (2000). Marine diatom assemblages from Eocene and younger erratics, McMurdo Sound, Antarctica. Antarctic Research Series 76, 73–98.CrossRefGoogle Scholar
Harwood, D. M. & Bohaty, S. M. (2001). Early Oligocene siliceous microfossil biostratigraphy of Cape Roberts Project Core CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 315–38.Google Scholar
Harwood, D. & Bohaty, S. M. (2007). Late Miocene sea-ice diatoms indicate a cold polar East Antarctic ice sheet event. Geophysical Research Abstracts, 9, 08078.Google Scholar
Harwood, D. M. & Gersonde, R. (1990). Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea) part 2, resting spores, chrysophycean cysts, and endoskeletal dinoflagellates, and notes on the origin of diatoms. Proceedings of the Ocean Drilling Program, Scientific Results, 113, 403–25.Google Scholar
Harwood, D. M., Nikolaev, V. A., & Winter, D. M. (2007). Cretaceous records of diatom evolution, radiation and expansion. In Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms, ed. S. Starratt Paleontological Society Short Course 13, Knoxville, TN: Paleontological Society, pp. 33–59.Google Scholar
Harwood, D. M., Scherer, R. P., & Webb, P.-N. (1989). Multiple Miocene marine productivity events in West Antarctica as recorded in upper Miocene sediments beneath the Ross Ice Shelf (Site J-9). Marine Micropaleontology, 15, 91–115.CrossRefGoogle Scholar
Hein, J. R., Scholl, D. W., Barron, J. A., Jones, M. G., & Miller, J. (1978). Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea. Sedimentology, 25, 155–81.CrossRefGoogle Scholar
Holmes, R. W. (1985). The morphology of diatoms epizoic on cetaceans and their transfer from Cocconeis to two genera, Bennettella and Epipellis. British Phycological Journal, 20, 43–57.CrossRefGoogle Scholar
Homann, M. (1991). Die Diatomeen der Fur-Formation (Alttertiär, Limfjord/Dänemark). Geologisches Jahrbuch Reihe A, 123, 3–285.Google Scholar
Huber, M., Brinkhuis, H., Stickley, C. E., et al. (2004). Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters? Paleoceanography, PA4016, DOI:10.1029/2004PA001014.CrossRef
Iakovleva, A. I., Brinkhuis, H., & Cavagnetto, C. (2001). Late Paleocene–early Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan: correlations across ancient seaways. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 243–68.CrossRefGoogle Scholar
Iakovleva, A. I. & Heilmann-Clausen, C. (2007). Wilsonidium pechoricum new species – a new dinoflagellate species with unusual asymmetry from the Paleocene/Eocene Transition. Journal of Paleontology, 81, 1020–30.CrossRefGoogle Scholar
Iakovleva, A. I., Oreshkina, T. V., Alekseev, A. S., & Rousseau, D.-D. (2000). A new Paleogene micropaleontological and paleogeographical data in the Petchora Depression, northeastern European Russia. Comptes Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science, 330, 485–91.Google Scholar
Iijima, A. & Tada, R. (1981). Silica diagenesis of Neogene diatomaceous and volcaniclastic sediments in northern Japan. Sedimentology, 28, 185–200.CrossRefGoogle Scholar
Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590–643.CrossRefGoogle Scholar
Jacot Des Combes, H., Esper, O., Rocha, C. L., et al. (2008). Diatom δ13C, δ15N, and C/N since the last glacial maximum in the Southern Ocean: potential impact of species composition, Paleoceanography, 23, PA4209, DOI:10.1029/2008PA001589.CrossRef
Jenkyns, H. C., Forster, A., Schouten, A., & Sinninghe Damsté, J. S. (2004). High temperatures in the Late Cretaceous Arctic Ocean. Nature, 432, 888–92.CrossRefGoogle ScholarPubMed
Jordan, R. W., Priddle, J., Pudsey, C. J., Barker, P. F., & Whitehouse, M. J. (1991). Unusual diatom layers in Upper Pleistocene sediments from the northern Weddell Sea. Deep-Sea Research, 38, 829–43.CrossRefGoogle Scholar
Jousé, A. P. (1949). Algae diatomaceae aetatis superne cretaceae ex arenis argillaceis-systematis. Botanicheskie Materialy Otdela Sporovykh Rastenii, Botanicheskii Institut, Akademia Nauk, SSSR, 6, 65–78 (in Russian).Google Scholar
Jousé, A. P. (1951). Diatoms of Paleocene age in the northern Urals. Botanicheskie Materialy Otdela Sporovykh Rastenii, Botanicheskii Institut, Akademia Nauk, SSSR, 7, 24–42 (in Russian).Google Scholar
Jousé, A. P. (1978). Diatom biostratigraphy on the generic level. Micropaleontology, 24, 316–26.CrossRefGoogle Scholar
Juillet-Leclerc, A. & Schrader, H. (1987). Variations of upwelling intensity recorded in varved sediment from the Gulf of California during the past 3,000 years. Nature, 329, 146–9.CrossRefGoogle Scholar
Kaczmarska, I., Barbrick, N. E., Ehrman, J. M., & Cant, G. P. (1993). Eucampia index as an indicator of the late Pleistocene oscillations of the winter sea ice extent at the Leg 119 Site 745B at the Kerguelen Plateau. Hydrobiologia, 269–270, 103–12.CrossRefGoogle Scholar
Kanaya, T. (1957). Eocene diatom assemblages from the Kellogg and “Sidney” shales, Mt. Diablo Area, California. The Science Reports of the Tohoku University, Sendai, Japan, 2nd Series (Geology), 28, 27–124.Google Scholar
Katz, M. E., Finkel, Z., Grzebyk, D., Knoll, A. H., & Falkowski, P. G. (2004). Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual Reviews of Ecology, Evolution, and Systematics, 35, 523–56.CrossRefGoogle Scholar
Katz, M. E., Wright, J. D., Miller, K. G., et al. (2005). Biological overprint of the geological carbon cycle. Marine Geology, 217 (Special Issue), 323–38.CrossRefGoogle Scholar
Kawamura, A. (1992). Notes on the pattern of diatom fouling in three southern rorqual species. Bulletin of the Faculty of Bioresources, Mie University, 8, 19–26.Google Scholar
Kemp, A. E. S. & Baldauf, J. G. (1993). Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature, 362, 141–4.CrossRefGoogle Scholar
Kemp, A. E. S., Baldauf, J. G., & Pearce, R. B. (1995). Origins and paleoceanographic significance of laminated diatom ooze from the eastern equatorial Pacific Ocean (Leg 138). Proceedings of the Ocean Drilling Program, Scientific Results, 138, 641–5.Google Scholar
Kemp, A. E. S., Pearce, R. B., Grigorov, I., et al. (2006). The production of giant marine diatoms and their export at oceanic frontal zones: implications for Si and C flux in stratified oceans. Global Biogeochemical Cycles, 20, GB4S04-[13pp], DOI:10.1029/2006GB002698.CrossRefGoogle Scholar
Kemp, A. E. S., Pearce, R. B., Koizumi, I., Pike, J., & Rance, S. J. (1999). The role of mat forming diatoms in formation of the Mediterranean sapropels. Nature, 398, 57–61.CrossRefGoogle Scholar
Kemp, A. E. S., Pike, J., Pearce, R. B., & Lange, C. B. (2000). The “fall dump” – a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep-Sea Research II, 47, 2129–54.CrossRefGoogle Scholar
Kohnen, M. E. L., Sinninghe Damsté, J. S., Kock-van Dalen, A. C., et al. (1990). Origin and diagenetic transformation of C25 and C30 highly branched isoprenoid sulfur compounds: further evidence for the formation of organically bound sulfur during early diagenesis. Geochimica et Cosmochimica Acta, 54, 3053–63.CrossRefGoogle Scholar
Kooistra, W. H. C. F. & Medlin, L. K. (1996). Evolution of the diatoms (Bacillariophyta) IV. A reconstruction of their age from small subunit rRNA coding regions and fossil record. Molecular Phylogenetics and Evolution, 6 (3), 391–407.CrossRefGoogle ScholarPubMed
Kolbe, R. W. (1954). Diatoms from equatorial Pacific cores. Reports of the Swedish Deep-Sea Expedition 1947–1948, VI, 1–49.
Krammer, R., Baumann, K.-H., & Henrich, R. (2005). Middle to late Miocene fluctuations in the incipient Benguela Upwelling System revealed by calcareous nannofossil assemblages (ODP Site 1085A). Palaeogeography, Palaeoclimatology, Palaeoecology, 230, 319–34.CrossRefGoogle Scholar
Lange, C. B., Berger, W. H., Lin, H. L., & Wefer, G. (1999). The early Matuyama Diatom Maximum off SW Africa, Benguela Current System (ODP Leg 175). Marine Geology, 161, 93–114.CrossRefGoogle Scholar
Lange, C. B., Romero, O. E., Wefer, G., & Gabric, A. J. (1998). Offshore influence of coastal upwelling off Mauritania, NW Africa, as recorded by diatoms in sediment traps at 2195 m water depth. Deep-Sea Research I, 45 (6), 985–1013.CrossRefGoogle Scholar
Lazarus, D., Spencer-Cervato, C., Pika-Biolzi, M., et al. (1995). Revised chronology of Neogene DSDP holes from the World Ocean. Ocean Drilling Program Technical Note 24, College Station, TX: Ocean Drilling Program.CrossRef
Leckie, R. M. & Webb, P.-N. (1983). Late Oligocene–early Miocene glacial record of the Ross Sea, Antarctica: evidence from DSDP Site 270. Geology, 11, 578–82.2.0.CO;2>CrossRefGoogle Scholar
Leventer, A., Domack, E., Dunbar, R., et al. (2006). Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession. GSA Today, 16 (12), DOI:10.1130/GSAT01612A.1CrossRef
Levasseur, M., Gosselin, M., & Michaud, S. (1994). A new source of dimethylsulfide (DMS) for the Arctic atmosphere: ice diatoms. Marine Biology, 121, 381–7.CrossRefGoogle Scholar
Lipps, J. H. & Mitchell, E. (1976). Trophic model for the adaptive radiations and extinctions of pelagic marine mammals. Paleobiology, 2, 147–55.CrossRefGoogle Scholar
Lohman, K. E. (1931). Diatoms from the Modelo Formation (Upper Miocene) near Girard, Los Angeles County, California. Unpublished Masters thesis, California Institute of Technology, Pasadena, CA.
Lohman, K. E. (1938). Pliocene diatoms from the Kettleman Hills, California. United States Geological Survey, Professional Paper 196-B, 55–87.Google Scholar
Long, J. A., Fuge, D. P., & Smith, J. (1946). Diatoms of the Moreno Shale. Journal of Paleontology, 20 (2), 89–118.Google Scholar
Lyle, M., Gibbs, S., Moore, T. C., & Rea, D. K. (2007). Late Oligocene initiation of the Antarctic Circumpolar Current: evidence from the South Pacific. Geology, 35, 691–4.CrossRefGoogle Scholar
MacLeod, N., Rawson, P. F., Forey, P. L., et al. (1997). The Cretaceous–Tertiary biotic transition. Journal of the Geological Society, 154, 265–92.CrossRefGoogle Scholar
Mann, A. (1921). The diatoms of the Lompoc Beds. In The Fish Fauna of the California Tertiary, ed. Jordan, D.S., Stanford University Publications, University Series, Biological Sciences, vol. 1, 293–8.Google Scholar
Merico, A., Tyrrell, T., & Wilson, P. A. (2008). Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea level fall. Nature, 452, 979–82.CrossRefGoogle ScholarPubMed
Michalopoulos, P., Aller, R. C., & Reeder, R. J. (2000). Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds. Geology, 28 (12), 1095–8.2.0.CO;2>CrossRefGoogle Scholar
Mikkelsen, N. (1977). Silica dissolution and overgrowth of fossil diatoms. Micropaleontology, 23, 223–6.CrossRefGoogle Scholar
Miller, K. G., Browning, J. V., Aubry, M.-P., et al. (2008). Eocene–Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama. Geological Society of America Bulletin, 120, 34–53.CrossRefGoogle Scholar
Mills, L. G. (1881). Diatoms from Guano. Journal of the Royal Microscopical Society, 1, 865 + plate XI.CrossRefGoogle Scholar
Mitlehner, A. G. (1996). Palaeoenvironments in the North Sea Basin around the Paleocene–Eocene boundary: evidence from diatoms and other siliceous microfossils. Geological Society, London, Special Publications, 101, 255–73.CrossRefGoogle Scholar
Moore, T. C. Jr., Jarrard, R. D., Olivarez Lyle, A., & Lyle, M. (2008). Eocene biogenic silica accumulation rates at the Pacific equatorial divergence zone. Paleoceanography, 23, PA2202, DOI:10.1029/2007PA001514.CrossRef
Moran, K., Backman, J., Brinkhuis, H., et al. (2006). The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441, 601–5.CrossRefGoogle ScholarPubMed
Mukhina, V. V. (1976). Species composition of the Late Paleocene diatoms and silicoflagellates in the Indian Ocean. Micropaleontology, 22 (2), 151–8.CrossRefGoogle Scholar
Nagasawa, S., Holmes, R. W., & Nemoto, T. (1989). Occurrence of Cetacean diatoms in the sediments of Otsuchi Bay, Iwate, Japan. Proceedings of the Japan Academy, Series B, 65 (4), 80–3.CrossRefGoogle Scholar
Naish, T. R., Powell, R. D., & Levy, R. H. (eds.) (2007). Studies from the ANDRILL, McMurdo Ice Shelf Project, Antarctica – Initial Science Report on AND-1B. Terra Antartica, 14, 109–328.Google Scholar
Naish, T., Powell, R., Levy, R., et al. (2009). Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature, 458, 322–8.CrossRefGoogle ScholarPubMed
Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A., & Quéguiner, B. (1995). Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9, 359–72.CrossRefGoogle Scholar
Nikolaev, V. A., Kociolek, J. P., Fourtanier, E., Barron, J. A., & Harwood, D. M. (2001). Late Cretaceous diatoms (Bacillariophyceae) from the Marca Shale Member of the Moreno Formation, California. Occasional Papers of the California Academy of Sciences, 152, 1–119.
Olney, M., Bohaty, S. M., Harwood, D. M., & Scherer, R. P. (2009). Creania lacyae gen. et sp. nov. and Synedropsis cheethamii sp. nov.: fossil indicators of Antarctic sea ice?Diatom Research, 24, 357–75.CrossRefGoogle Scholar
Olney, M. P., Scherer, R. P., Bohaty, S. M., & Harwood, D. M. (2005). Eocene–Oligocene paleoecology and the diatom genus Kisseleviella Sheshukova-Poretskaya from the Victoria Land Basin, Antarctica. Marine Micropaleontology, 58, 56–72.CrossRefGoogle Scholar
Olney, M. P., Scherer, R. P., Harwood, D. M., & Bohaty, S. M. (2007). Oligocene-early Miocene Antarctic nearshore diatom biostratigraphy. Deep-Sea Research II, 54, 2325–49.CrossRefGoogle Scholar
Oreshkina, T. & Aleksandrova, G. (2007). Terminal Paleocene of the Volga middle reaches: biostratigraphy and paleosettings. Stratigraphy and Geological Correlation, 15 (2), 206–30.CrossRefGoogle Scholar
Passow, U., Engel, A., & Ploug, H. (2003). The role of aggregation for the dissolution of diatom frustules. FEMS Microbiology Ecology, 46, 247–55.CrossRefGoogle ScholarPubMed
Patarnello, T., Bargelloni, L., Varotto, V., & Battaglia, B. (1996). Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data. Marine Biology, 126, 603–8.CrossRefGoogle Scholar
Pike, J. (2000). Data report: backscattered electron imagery analysis of early Pliocene laminated Ethmodiscus ooze, ODP Site 1010, Leg 167. Proceedings of the Ocean Drilling Program, Scientific Results, 167, 207–12.Google Scholar
Pike, J., Allen, C. S., Leventer, A., Stickley, C. E., & Pudsey, C. J. (2008). Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Marine Micropaleontology, 67, 274–87.CrossRefGoogle Scholar
Pfuhl, H. A., & McCave, I. N. (2005). Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth and Planetary Science Letters, 235, 715–28.CrossRefGoogle Scholar
Pollock, D. E. (1997). The role of diatoms, dissolved silicate and Antarctic glaciation in glacial/interglacial climatic change: a hypothesis. Global and Planetary Change, 14, 113–25.CrossRefGoogle Scholar
Prasad, V., Strömberg, C. A. E., Alimohammadian, H., & Sahni, A. (2005). Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310, 1177–80.CrossRefGoogle ScholarPubMed
Rabosky, D. L. & Sorhannus, U. (2009). Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature, 457, 183–6.CrossRefGoogle ScholarPubMed
Radionova, E. P. & Khokhlova, I. E. (2000). Was the North Atlantic connected with the Tethys via the Arctic in the early Eocene? Evidence from siliceous plankton. Geologiska Foreningens i Stockholm Forhnndlingar (GFF), 122, 133–4.Google Scholar
Raiswell, R. & Berner, R. A. (1985). Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285, 710–24.CrossRefGoogle Scholar
Reinhold, T. (1937). Fossil diatoms of the Neogene of Java and their zonal distribution. Geolische Serie, 12, 43–133 + 21 plates.Google Scholar
Romero, O., Mollenhauer, G., Schneider, R. R., & Wefer, G. (2003). Oscillations of the siliceous imprint in the central Benguela Upwelling System from MIS 3 through to the early Holocene: the influence of the Southern Ocean. Journal of Quaternary Science, 18, 733–43.CrossRefGoogle Scholar
Rothpletz, A. (1896). Über die Flysch-Fucoiden und einige andere fossile Algen, sowie über liasische, Diatomeen führende Hornschwämme. Zeitschrift der Deutschen Geologischen Gesellschaft, Berlin, 48, 854–914.Google Scholar
Rothpletz, A. (1900). Über einen neuen jurassichen Hornschwämm und die darin eingeschlossenen. Diatomeen. Zeitschrift der Deutschen Geologischen Gesellschaft, Berlin, 52, 154–60.Google Scholar
Round, F. E., & Alexander, C. G. (2002). Licmosoma – a new diatom genus growing on barnacle cirri. Diatom Research, 17, 319–26.CrossRefGoogle Scholar
Rowland, S. J., & Robson, J. N. (1990). The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons, recent sediments biota – a review. Marine Environmental Research, 30, 191–216.CrossRefGoogle Scholar
Salamy, K. A., & Zachos, J. C. (1999). Late Eocene–early Oligocene climate change on Southern Ocean fertility: inferences from sediment accumulation and stable isotope data. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 79–93.CrossRefGoogle Scholar
Scherer, R. P. (1991). Quaternary and Tertiary microfossils from beneath Ice Stream B: Evidence for a dynamic West Antarctic Ice Sheet history. Global and Planetary Change, 4, 395–412.CrossRefGoogle Scholar
Scherer, R. P., Aldahan, A., Tulaczyk, S., et al. (1998). Pleistocene collapse of the West Antarctic Ice Sheet. Science, 281, 82–5.CrossRefGoogle ScholarPubMed
Scherer, R. P., Bohaty, S. M., Dunbar, R. B., et al. (2008). Antarctic records of precession-paced insolation-driven warming during early Pleistocene Marine Isotope Stage 31. Geophysical Research Letters, 35, L03505, DOI:10.1029/2007GL032254.CrossRefGoogle Scholar
Scherer, R. P., Bohaty, S. M., & Harwood, D. M. (2001). Oligocene and Lower Miocene siliceous microfossil biostratigraphy of Cape Roberts Project Core CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica, 7, 417–42.Google Scholar
Scherer, R. P., Gladenkov, A. Yu., & Barron, J. A. (2007a). Methods and applications of Cenozoic marine diatom biostratigraphy. In Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms, ed. Starratt, S. W., Paleontological Society Short Course 13, Knoxville, TN: The Paleontological Society, pp. 61–83.Google Scholar
Scherer, R., Hannah, M., Maffioli, P., et al. (2007b). Paleontologic characterisation and analysis of the AND-1B Core, ANDRILL McMurdo Ice Shelf Project, Antarctica. Terra Antartica, 14, 223–54.Google Scholar
Scherer, R. P., Sjunneskog, C. M., Iverson, N., & Hooyer, T. (2004). Assessing subglacial processes from diatom fragmentation patterns. Geology, 32, 557–60.CrossRefGoogle Scholar
Scherer, R. P., Sjunneskog, C. M., Iverson, N., & Hooyer, T. (2005). Frustules to fragments, diatoms to dust: how degradation of microfossil micro and nanostructures can teach us how ice sheets work. Journal of Nanoscience and Nanotechnology, 5, 96–9.CrossRefGoogle Scholar
Schrader, H.-J. (1971). Fecal pellets: role in sedimentation of pelagic diatoms. Science, 174, 55–7.CrossRefGoogle ScholarPubMed
Schrader, H. J. & Gersonde, R. (1978). Diatoms and silicoflagellates. Utrecht Micropaleontological Bulletin, 17, 129–76.Google Scholar
Schrader, H. & Sorknes, R. (1990). Spatial and temporal variation of Peruvian coastal upwelling during the latest Quaternary. Proceedings of the Ocean Drilling Program, Scientific Results, 112, 391–406.Google Scholar
Schuette, G. & Schrader, H. (1979). Diatom taphocoenoses in the coastal upwelling area off western South America. Nova Hedwigia, 64, 359–78.Google Scholar
Schuette, G. & Schrader, H. (1981). Diatom taphocoenoses in the coastal upwelling area off south West Africa. Marine Micropaleontology, 6, 131–55.CrossRefGoogle Scholar
Shannon, L. V. & Hunter, D. (1988). Notes on Antarctic Intermediate Water around southern Africa. South African Journal of Marine Science, 6, 107–17.CrossRefGoogle Scholar
Shemesh, A., Burckle, L. H., & Hays, J. D. (1995). Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean, Paleoceanography 10, 179–96.CrossRefGoogle Scholar
Shemesh, A., Mortlock, R. A., & Froelich, P. N. (1989). Late Cenozoic Ge/Si record of marine biogenic opal: implications for variations of riverine fluxes to the ocean, Paleoceanography, 4, 221–34.CrossRefGoogle Scholar
Shiine, H., Suzuki, N., Motoyama, I., et al. (2008). Diatom biomarkers during the Eocene/Oligocene transition in the Il'pinskii Peninsula, Kamchatka, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 264, 1–10.CrossRefGoogle Scholar
Shimada, C., Hasegawa, S., Tanimura, Y., & Burckle, L. H. (2003). A new index to quantify diatom dissolution levels based on a ratio of Neodenticula seminae frustule components. Micropaleontology, 49, 267–76.CrossRefGoogle Scholar
Shimada, C., Sato, T., Toyoshima, S., Yamasaki, M., & Tanimura, Y. (2008). Paleoecological significance of laminated diatomaceous oozes during the middle-to-late Pleistocene, North Atlantic Ocean (IODP Site U1304). Marine Micropaleontology, 69, 139–50.CrossRefGoogle Scholar
Shimada, C., Tanaka, Y., & Tanimura, Y. (2006). Seasonal variation in skeletal silicification of Neodenticula seminae, a marine planktonic diatom: sediment trap experiments in the NW Pacific Ocean (1997–2001). Marine Micropaleontology, 60, 130–44.CrossRefGoogle Scholar
Siesser, W. G. (1980). Late Miocene origin of the Benguela upwelling system off northern Namibia. Science, 208, 283–5.CrossRefGoogle ScholarPubMed
Sims, P. A., Mann, D. G., & Medlin, L. K. (2006). Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia, 45, 361–402.CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Muyzer, G., Abbas, B., et al. (2004). The rise of the rhizosolenid diatoms. Science, 304, 584–7.CrossRefGoogle Scholar
Sjunneskog, C. S. & Scherer, R. P. (2005). Mixed diatom assemblages in Ross Sea (Antarctica) glacigenic facies. Palaeogeography, Palaeoclimatology, Palaeoecology, 218 (3–4), 287–300.CrossRefGoogle Scholar
Smetacek, V. S. (1985). Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology, 84, 239–51.CrossRefGoogle Scholar
Spencer-Cervato, C. (1999). The Cenozoic deep-sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database (online). Palaeontologia Electronica, 2 (2), article 4.
Stickley, C. E., Brinkhuis, H., McGonigal, K. L., et al. (2004a). Late Cretaceous–Quaternary biomagnetostratigraphy of ODP Sites 1168, 1170, 1171, and 1172, Tasmanian Gateway. Proceedings of the Ocean Drilling Program, Scientific Results, 189, 1–57. See http://www-odp.tamu.edu/publications/189/SR/VOLUME/CHAPTERS/111.PDF.Google Scholar
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., et al. (2004b). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19, PA4027, DOI: 10.1029/2004PA001022.CrossRef
Stickley, C. E., Koç, N., Brumsack, H.-J., Jordan, R. W., & Suto, I. (2008). A siliceous microfossil view of middle Eocene Arctic paleoenvironments: a window of biosilica production and preservation. Paleoceanography, 23, PA1S14, DOI:10.1029/2007PA001485.CrossRefGoogle Scholar
Stickley, C. E., Pike, J., Leventer, A., et al. (2005). Deglacial ocean and climate seasonality in laminated diatom sediments, MacRobertson Shelf, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 290–310.CrossRefGoogle Scholar
Stickley, C. E., St. John, K., Koç, N., et al. (2009). Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature, 460, 376–9.CrossRefGoogle ScholarPubMed
Strelnikova, N. I. (1974). Diatoms of the Late Cretaceous (Western Siberia). Moscow: Nauka (in Russian).Google Scholar
Strelnikova, N. I. (1975). Diatoms of the Cretaceous Period. Nova Hedwigia, Beiheft, 53, 311–21.Google Scholar
Summerhayes, C. P., Prell, W. L. & Emeis, K. C. (eds.) (1992). Upwelling systems: evolution since the early Miocene. Geological Society of London, Special Publication, 64, 1–519.CrossRefGoogle Scholar
Suto, I. (2004). Fossil marine diatom resting spore morpho-genus Gemellodiscus gen. nov. in the North Pacific and Norwegian Sea. Paleontological Research, 8, 255–82.CrossRefGoogle Scholar
Suto, I. (2005). Taxonomy and biostratigraphy of the fossil marine diatom resting genera Dicladia Ehrenberg, Monocladia Suto and Syndendrium Ehrenberg in the North Pacific and Norwegian Sea. Diatom Research, 20, 351–74.CrossRefGoogle Scholar
Suto, I. (2006). The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea. Marine Micropaleontology, 58, 259–69.CrossRefGoogle Scholar
Suto, I., Jordan, R. W., & Watanabe, M. (2008). Taxonomy of the fossil marine diatom resting spore genus Goniothecium Ehrenberg and its allied species. Diatom Research, 23, 445–69.CrossRefGoogle Scholar
Suto, I., Jordan, R. W., & Watanabe, M. (2009). Taxonomy of middle Eocene diatom resting spores and their allied taxa from IODP sites in the central Arctic Ocean (the Lomonosov Ridge). Micropaleontology, 55, 259–312.Google Scholar
Suto, I., Watanabe, M., & Jordan, R. W. (in press). Taxonomy of the fossil marine diatom resting spore genus Odontotropis Grunow. Diatom Research.
Takahashi, O., Kimura, M., Ishii, A., & Mayama, S. (1999). Upper Cretaceous diatoms from central Japan. In Proceedings of the Fourteenth International Diatom Symposium, Tokyo, ed. Mayama, S., Idei, M., & Koizumi, I., Königstein: Koeltz Scientific Books, pp. 146–55.Google Scholar
Tapia, P. M. & Harwood, D. M. (2002). Upper Cretaceous diatom biostratigraphy of the Arctic Archipelago and northern continental margin, Canada. Micropaleontology, 48, 303–42.CrossRefGoogle Scholar
Thewissen, J. G. M., & Williams, E. M. (2002). The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annual Review of Ecology and Systematics, 33, 73–90.CrossRefGoogle Scholar
Thomas, E. (2008). Descent into the Icehouse. Geology, 36, 191–2.CrossRefGoogle Scholar
Tréguer, P., Nelson, D. M., Bennekom, A. J, et al. (1995). The silica balance in the world ocean: a re-estimate. Science, 268, 375–9.CrossRefGoogle Scholar
Eetvelde, Y., Dupuis, C., & Cornet, C. (2004). Pyritized diatoms: a good fossil marker in the upper Paleocene–lower Eocene sediments from the Belgian and Dieppe-Hampshire basins. Netherlands Journal of Geosciences, 83, 173–8.CrossRefGoogle Scholar
Villareal, T. A., Altabet, M. A., & Culver-Rymsza, K. (1993). Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature, 363, 709–12.CrossRefGoogle Scholar
Villareal, T. A., Joseph, L., Brzezinski, M. A., et al. (1999). Biological and chemical characteristics of the giant diatom Ethmodiscus (Bacillariophyceae) in the central North Pacific Gyre. Journal of Phycology, 35, 896–902.CrossRefGoogle Scholar
Wagner, T., Damsté, J. S. S., Hofmann, P., & Beckmann, B. (2004). Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales. Paleoceanography, 19, DOI:10.1029/2003PA000898.CrossRef
Watanabe, M. & Takahashi, M. (1997). Diatom biostratigraphy of the middle Miocene Kinone and lower Amatsu Formation in the Boso Peninsula, central Japan. Journal of the Japanese Association for Petroleum Technology, 62, 215–25 (in Japanese with English abstract).CrossRefGoogle Scholar
Weijers, J. W. H., Schouten, S., Sluijs, A., Brinkhuis, H., & Sinninghe Damsté, J. S. (2007). High latitude subtropical continental temperatures during the Palaeocene–Eocene Thermal Maximum. Earth and Planetary Science Letters, 261, 230–8.CrossRefGoogle Scholar
Whitehead, J. M., Wotherspoon, S., & Bohaty, S. M. (2005). Minimal Antarctic sea ice during the Pliocene. Geology, 33, 137–40.CrossRefGoogle Scholar
Witt, O. N. (1886). Über den Polierschiefer von Archangelsk, Kurojedowo im Gouv. Simbirsk. Verhandlungen, Russischskaiserliche, Mineralogische Gesellschaft zu St. Petersburg, Series II, 22, 137–77.Google Scholar
Wolfe, A. P., Edlund, M. B., Sweet, A. R., & Creighton, S. D. (2006). A first account of organelle preservation in Eocene nonmarine diatoms: observations and paleobiological implications. PALAIOS, 21, 298–304.CrossRefGoogle Scholar
Wornardt, W. W. Jr. (1972). Stratigraphic distribution of diatom genera in marine sediments in western North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 12, 49–74.CrossRefGoogle Scholar
Yoder, J. A., Ackleson, S., Barber, R. T., Flamant, P., & Balch, W. A. (1994). A line in the sea. Nature, 371, 689–92.CrossRefGoogle Scholar
Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–83.CrossRefGoogle ScholarPubMed
Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–93.CrossRefGoogle ScholarPubMed
Zane, L. & Patarnello, T. (2000). Krill: a possible model for investigating the effects of ocean currents on the genetic structure of a pelagic invertebrate. Canadian Journal of Fisheries and Aquatic Science, 57 (S3), 16–23.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×