Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T22:17:56.089Z Has data issue: false hasContentIssue false

10 - Incompressible Wall-Bounded Flows

from SECTION C - VERIFICATION AND VALIDATION

Published online by Cambridge University Press:  08 January 2010

Fernando F. Grinstein
Affiliation:
Los Alamos National Laboratory
Len G. Margolin
Affiliation:
Los Alamos National Laboratory
William J. Rider
Affiliation:
Los Alamos National Laboratory
Get access

Summary

Introduction

Almost all flows of practical interest are turbulent, and thus the simulation of turbulent flow and its diversity of flow characteristics remains one of the most challenging areas in the field of classical physics. In many situations the fluid can be considered incompressible; that is, its density is virtually constant in the frame of reference, moving locally with the fluid, but density gradients may be passively convected with the flow. Examples of such flows of engineering importance are as follows: external flows, such as those around cars, ships, buildings, chimneys, masts, and suspension bridges; and internal flows, such as those in intake manifolds, cooling and ventilation systems, combustion engines, and applications from the areas of biomedicine, the process industry, the food industry, and so on. In contrast to free flows (ideally considered as homogeneous and isotropic), wall-bounded flows are characterized by much less universal properties than free flows and are thus even more challenging to study. The main reason for this is that, as the Reynolds number increases, and the thickness of the viscous sublayer decreases, the number of grid points required to resolve the near-wall flow increases.

The two basic ways of computing turbulent flows have traditionally been direct numerical simulation (DNS) and Reynolds-averaged Navier–Stokes (RANS) modeling. In the former the time-dependent Navier–Stokes equations (NSE) are solved numerically, essentially without approximations. In the latter, only time scales longer than those of the turbulent motion are computed, and the effect of the turbulent velocity fluctuations is modeled with a turbulence model.

Type
Chapter
Information
Implicit Large Eddy Simulation
Computing Turbulent Fluid Dynamics
, pp. 301 - 328
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×