Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T18:26:40.959Z Has data issue: false hasContentIssue false

8 - Functional magnetic resonance imaging studies of the basal ganglia and precision grip

Published online by Cambridge University Press:  23 December 2009

Dennis A. Nowak
Affiliation:
Klinik Kipfenberg, Kipfenberg, Germany
Joachim Hermsdörfer
Affiliation:
Technical University of Munich
Get access

Summary

Summary

Grasping behavior has been well studied in both human and non-human primates. Studies have revealed a classic grasping circuit that involves several regions, such as the motor, prefrontal and parietal cortices. However, the functional contribution of the basal ganglia to grasping control is often overlooked. This is surprising because many basal ganglia disorders (e.g. Parkinson's disease) have been experimentally associated with deficits in grasping control. Recent work in our laboratory used fMRI to demonstrate that the caudate, putamen, internal and external segments of the globus pallidus (GPi and GPe, respectively), and subthalamic nucleus (STN) participate in circuits that independently regulate the selection and scaling of parameters important for grasping. These findings provide new evidence that grasping must be considered as a behavior that is processed in both cortical and subcortical structures.

Introduction

Prehension remains one of the most important functions of primate motor systems. The remarkable adaptability and effortlessness with which primates can reach for and grasp objects of variable size, shape and mass has had unequivocal evolutionary importance. Nevertheless, it is widely accepted that even simple reach-to-grasp movements pose considerable challenges for the primate sensorimotor system (Johnson-Frey, 2003). During the prehension of a given object, individuals must use visual (i.e. object distance, direction) and somatosensory information (i.e. joint angle) to transport the hand to the object location via a precisely aimed reaching movement.

Type
Chapter
Information
Sensorimotor Control of Grasping
Physiology and Pathophysiology
, pp. 99 - 109
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, G. & Berardelli, A. (2003). Sensorimotor integration in movement disorders. Mov Disord, 18, 231–240.CrossRefGoogle ScholarPubMed
Alberts, J. L., Tresilian, J. R. & Stelmach, G. E. (1998). The co-ordination and phasing of a bilateral prehension task. The influence of Parkinson's disease. Brain, 121, 725–742.CrossRefGoogle ScholarPubMed
Alberts, J. L., Saling, M., Adler, C. H. & Stelmach, G. E. (2000). Disruptions in the reach-to-grasp actions of Parkinson's patients. Exp Brain Res, 134, 353–362.CrossRefGoogle ScholarPubMed
Albin, R. L., Young, A. B. & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci, 12, 366–375.CrossRefGoogle ScholarPubMed
Alexander, G. E., Delong, M. R. & Strick, P. L.(1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 9, 357–381.CrossRefGoogle ScholarPubMed
Berns, G. S., Song, A. W. & Mao, H. (1999). Continuous functional magnetic resonance imaging reveals dynamic nonlinearities of “dose-response” curves for finger opposition. J Neurosci, 19, RC17.CrossRefGoogle ScholarPubMed
Bertram, C. P., Lemay, M. & Stelmach, G. E. (2005). The effect of Parkinson's disease on the control of multi-segmental coordination. Brain Cogn, 57, 16–20.CrossRefGoogle ScholarPubMed
Binkofski, F., Dohle, C., Posse, S.et al. (1998). Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology, 50, 1253–1259.CrossRefGoogle ScholarPubMed
Brotchie, P., Iansek, R. & Horne, M. K. (1991). Motor function of the monkey globus pallidus. 2. Cognitive aspects of movement and phasic neuronal activity. Brain, 114, 1685–1702.CrossRefGoogle ScholarPubMed
Castiello, U. (2005). The neuroscience of grasping. Nat Rev Neurosci, 6, 726–736.CrossRefGoogle ScholarPubMed
Castiello, U., Stelmach, G. E. & Lieberman, A. N. (1993). Temporal dissociation of the prehension pattern in Parkinson's disease. Neuropsychologia, 31, 395–402.CrossRefGoogle ScholarPubMed
Contreras-Vidal, J. L., Teulings, H. L. & Stelmach, G. E. (1995). Micrographia in Parkinson's disease. Neuroreport, 6, 2089–2092.CrossRefGoogle ScholarPubMed
Deiber, M. P., Ibanez, V., Sadato, N. & Hallett, M. (1996). Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol, 75, 233–247.CrossRefGoogle ScholarPubMed
DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci, 13, 281–285.CrossRefGoogle ScholarPubMed
DeLong, M. R. & Strick, P. L. (1974). Relation of basal ganglia, cerebellum, and motor cortex units to ramp and ballistic limb movements. Brain Res, 71, 327–335.CrossRefGoogle ScholarPubMed
Flanagan, J. R., Bowman, M. C. & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Curr Opin Neurobiol, 16, 650–659.CrossRefGoogle ScholarPubMed
Gerardin, E., Pochon, J. B., Poline, J. B.et al. (2004). Distinct striatal regions support movement selection, preparation and execution. Neuroreport, 15, 2327–2331.CrossRefGoogle ScholarPubMed
Gibson, A. R., Horn, K. M., Stein, J. F. & Kan, P. L. (1996). Activity of interpositus neurons during a visually guided reach. Can J Physiol Pharmacol, 74, 499–512.CrossRefGoogle ScholarPubMed
Gordon, A. M., Quinn, L., Reilmann, R. & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington's disease. Exp Neurol, 163, 136–148.CrossRefGoogle ScholarPubMed
Gottlieb, G. L., Corcos, D. M. & Agarwal, G. C. (1989). Strategies for the control of voluntary movements with one mechanical degree of freedom. Behavioral and Brain Sciences, 189–250.CrossRefGoogle Scholar
Hamada, I., Delong, M. R. & Mano, N. (1990). Activity of identified wrist-related pallidal neurons during step and ramp wrist movements in the monkey. J Neurophysiol, 64, 1892–1906.CrossRefGoogle ScholarPubMed
Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M. & Lozano, A. M. (2004). The subthalamic nucleus in the context of movement disorders. Brain, 127, 4–20.CrossRefGoogle ScholarPubMed
Jeannerod, M. (1984). The timing of natural prehension movements. J Mot Behav, 16, 235–254.CrossRefGoogle ScholarPubMed
Johnson-Frey, S. H. (2003). What's so special about human tool use?Neuron, 39, 201–204.CrossRefGoogle ScholarPubMed
Kawashima, R., Roland, P. E. & O'Sullivan, B. T. (1994). Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study. J Neurosci, 14, 3462–3474.CrossRefGoogle ScholarPubMed
Kornhuber, H. H. (1971). Motor functions of cerebellum and basal ganglia: the cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik, 8, 157–162.CrossRefGoogle ScholarPubMed
Krams, M., Rushworth, M. F., Deiber, M. P., Frackowiak, R. S. & Passingham, R. E. (1998). The preparation, execution and suppression of copied movements in the human brain. Exp Brain Res, 120, 386–398.CrossRefGoogle ScholarPubMed
Lawrence, D. G. & Hopkins, D. A. (1976). The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. Brain, 99, 235–254.CrossRefGoogle ScholarPubMed
Lawrence, D. G. & Kuypers, H. G. (1968a). The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 91, 1–14.CrossRefGoogle ScholarPubMed
Lawrence, D. G. & Kuypers, H. G. (1968b). The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain, 91, 15–36.CrossRefGoogle ScholarPubMed
Lehericy, S., Bardinet, E., Tremblay, L.et al. (2006). Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex, 16, 149–161.CrossRefGoogle ScholarPubMed
Mink, J. W. & Thach, W. T. (1987). Preferential relation of pallidal neurons to ballistic movements. Brain Res, 417, 393–398.CrossRefGoogle ScholarPubMed
Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol, 83, 2580–2601.CrossRefGoogle ScholarPubMed
Nambu, A., Takada, M., Inase, M. & Tokuno, H. (1996). Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci, 16, 2671–2683.CrossRefGoogle ScholarPubMed
Nambu, A., Tokuno, H., Hamada, I.et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol, 84, 289–300.CrossRefGoogle ScholarPubMed
Nowak, D. A. & Hermsdorfer, J. (2006). Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res, 173, 650–660.CrossRefGoogle ScholarPubMed
Nowak, D. A., Rosenkranz, K., Topka, H. & Rothwell, J. (2005). Disturbances of grip force behaviour in focal hand dystonia: evidence for a generalised impairment of sensory-motor integration?J Neurol Neurosurg Psychiatry, 76, 953–959.CrossRefGoogle ScholarPubMed
Onla-Or, S. & Winstein, C. J. (2001). Function of the ‘direct’ and ‘indirect’ pathways of the basal ganglia motor loop: evidence from reciprocal aiming movements in Parkinson's disease. Brain Res Cogn Brain Res, 10, 329–332.CrossRefGoogle ScholarPubMed
Rand, M. K., Smiley-Oyen, A. L., Shimansky, Y. P., Bloedel, J. R. & Stelmach, G. E. (2006). Control of aperture closure during reach-to-grasp movements in Parkinson's disease. Exp Brain Res, 168, 131–142.CrossRefGoogle ScholarPubMed
Rao, S. M., Binder, J. R., Bandettini, P. A.et al. (1993). Functional magnetic resonance imaging of complex human movements. Neurology, 43, 2311–2318.CrossRefGoogle ScholarPubMed
Rearick, M. P., Stelmach, G. E., Leis, B. & Santello, M. (2002). Coordination and control of forces during multifingered grasping in Parkinson's disease. Exp Neurol, 177, 428–442.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Luppino, G. & Matelli, M. (1998). The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol, 106, 283–296.CrossRefGoogle ScholarPubMed
Sadato, N., Ibanez, V., Campbell, G.et al. (1997). Frequency-dependent changes of regional cerebral blood flow during finger movements: functional MRI compared to PET. J Cereb Blood Flow Metab, 17, 670–679.CrossRefGoogle Scholar
Smeets, J. B. & Brenner, E. (1999). A new view on grasping. Motor Control, 3, 237–271.CrossRefGoogle ScholarPubMed
Spraker, M. B., Yu, H., Corcos, D. M. & Vaillancourt, D. E. (2007). Role of individual basal ganglia nuclei in force amplitude generation. J Neurophysiol, 98, 821–834.CrossRefGoogle ScholarPubMed
Taniwaki, T., Okayama, A., Yoshiura, T.et al. (2003). Reappraisal of the motor role of basal ganglia: a functional magnetic resonance image study. J Neurosci, 23, 3432–3438.CrossRefGoogle ScholarPubMed
Thoenissen, D., Zilles, K. & Toni, I. (2002). Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci, 22, 9024–9034.CrossRefGoogle ScholarPubMed
Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm movements: a model. Nat Neurosci, 3, 391–398.CrossRefGoogle ScholarPubMed
Turner, R. S., Grafton, S. T., Votaw, J. R., Delong, M. R. & Hoffman, J. M. (1998). Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol, 80, 2162–2176.CrossRefGoogle ScholarPubMed
Turner, R. S., Desmurget, M., Grethe, J., Crutcher, M. D. & Grafton, S. T. (2003). Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol, 90, 3958–3966.CrossRefGoogle ScholarPubMed
Vaillancourt, D. E., Mayka, M. A., Thulborn, K. R. & Corcos, D. M. (2004). Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage, 23, 175–186.CrossRefGoogle ScholarPubMed
Vaillancourt, D. E., Yu, H., Mayka, M. A. & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage, 36, 793–803.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×