Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T21:51:35.875Z Has data issue: false hasContentIssue false

2 - Predictor–corrector methods

Published online by Cambridge University Press:  18 August 2009

Sverre J. Aarseth
Affiliation:
University of Cambridge
Get access

Summary

Introduction

In this chapter, we provide the tools needed for standard N-body integration. We first review the traditional polynomial method which leads to increased efficiency when used in connection with individual time-steps. This self-contained treatment follows closely an earlier description [Aarseth, 1985a, 1994]. Some alternative formulations are discussed briefly for completeness. We then introduce the simpler Hermite scheme [Makino, 1991a,b] that was originally developed for special-purpose computers but is equally suitable for workstations or laptops and is attractive by its simplicity. As discussed in a later section, the success of this scheme is based on the novel concept of using quantized time-steps (factor of 2 commensurate), which reduces overheads. Variants of the Hermite method were attempted in the past, such as the low-order scheme of categories [Hayli, 1967, 1974] and the full use of explicit Taylor series derivatives [Lecar, Loeser & Cherniack, 1974]. The former study actually introduced the idea of hierarchical time-steps with respect to individual force calculations using a low-order scheme, whereas the latter formulation is expensive (but accurate) even for modest particle numbers.

Force Polynomials

The force acting on a particle usually varies in a smooth manner throughout an orbit, provided the particle number is sufficiently large. Hence by fitting a polynomial through some past points, it is possible to extend the time interval for advancing the equations of motion and thereby reduce the number of force evaluations. In other words, we can use the past information to predict the future motion with greater confidence.

Type
Chapter
Information
Gravitational N-Body Simulations
Tools and Algorithms
, pp. 18 - 31
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×