Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T06:51:18.442Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  24 March 2017

David Marker
Affiliation:
University of Illinois, Chicago
Margit Messmer
Affiliation:
University of Illinois, Urbana-Champaign
Anand Pillay
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

The model theory of fields is a fascinating subject stretching from Tarski's work on the decidability of the theories of the real and complex fields to Hrushovksi's recent proof of the Mordell-Lang conjecture for function fields. Our goal in this volume is to give an introduction to this fascinating area concentrating on connections to stability theory.

The first paper Introduction to the model theory of fields begins by introducing the method of quantifier elimination and applying it to study the definable sets in algebraically closed fields and real closed fields. These first sections are aimed for beginning logic students and can easily be incorporated into a first graduate course in logic. They can also be easily read by mathematicians from other areas. Algebraically closed fields are an important examples of ω-stable theories. Indeed in section 5 we prove Macintyre's result that that any infinite cj-stable field is algebraically closed. The last section surveys some results on algebraically closed fields motivated by Zilber's conjecture on the nature of strongly minimal sets. These notes were originally prepared for a two week series of lecture scheduled to be given in Bejing in 1989. Because of the Tinnanmen square massacre these lectures were never given.

The second paper Model theory of differential fields is based on a course given at the University of Illinois at Chicago in 1991. Differentially closed fields provide a fascinating example for many model theoretic phenomena (Sacks referred to differentially closed fields as the “least misleading example”). This paper begins with an introduction to the necessary differential algebra and elementary model theory of differential fields. Next we examine types, ranks and prime models, proving among other things that differential closures are not minimal and that for K > N0 there are 2k non-isomorphic models. We conclude with a brief survey of differential Galois theory including Poizat's model theoretic proof of Kolchin's result that the differential Galois group of a strongly normal extension is an algebraic group over the constants and the Pillay-Sokolovic result that any superstable differential field has no proper strongly normal expansions. Most of this article can be read by a beginning graduate student in model theory. At some points a deeper knowledge of stability theory or algebraic geometry will be helpful.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • David Marker, University of Illinois, Chicago, Margit Messmer, University of Illinois, Urbana-Champaign, Anand Pillay, University of Illinois, Urbana-Champaign
  • Book: Model Theory of Fields
  • Online publication: 24 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781316716991.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • David Marker, University of Illinois, Chicago, Margit Messmer, University of Illinois, Urbana-Champaign, Anand Pillay, University of Illinois, Urbana-Champaign
  • Book: Model Theory of Fields
  • Online publication: 24 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781316716991.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • David Marker, University of Illinois, Chicago, Margit Messmer, University of Illinois, Urbana-Champaign, Anand Pillay, University of Illinois, Urbana-Champaign
  • Book: Model Theory of Fields
  • Online publication: 24 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781316716991.001
Available formats
×