Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T22:23:49.963Z Has data issue: false hasContentIssue false

6 - Endocrinological analyses at Taï

Published online by Cambridge University Press:  25 November 2019

Christophe Boesch
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Roman Wittig
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Catherine Crockford
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Linda Vigilant
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Tobias Deschner
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Fabian Leendertz
Affiliation:
Robert Koch-Institut, Germany
Get access

Summary

A variety of studies have investigated endocrinological aspects of ecology, cooperation and immune system activation in Taï chimpanzees, making use of the ever-growing number of validated biomarkers used on non-invasive samples by the endocrinology laboratory at the MPI EVAN. In particular, the measurement of urinary oxytocin allows for insights into benefits of food-sharing, bonds and the potential physiological mechanism behind cooperation. Measures of urinary cortisol in combination with creatinine and C-peptide allow for the investigation of causes of seasonal variation in stress levels while patterns of immune system activation are monitored by the measurement of urinary neopterin. Future studies will profit from combined analysis of endocrine and immune parameters in relation to behaviour and reproductive success to investigate life-history trade-offs. Across-site comparisons of behaviour and endocrine patterns will help us to understand how variation in ecological and physiological parameters form the social setting of a population which leads to relatively low intergroup hostility, low leverage of males over females and relatively high levels of female sociality at Taï.

Type
Chapter
Information
The Chimpanzees of the Taï Forest
40 Years of Research
, pp. 78 - 88
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andelman, S. J., Else, J. G., Hearn, J. P. & Hodges, J. K. (1985). The non-invasive monitoring of reproductive events in wild vervet monkeys (Cercopithecus aethiops) using urinary pregnanediol-3α-glucuronide and its correlation with behavioural observations. Journal of Zoology, 205, 467477. https://doi.org/10.1111/j.1469–7998.1985.tb03538.xCrossRefGoogle Scholar
Behringer, V., Deschner, T., Deimel, C., Stevens, J. M. G. & Hohmann, G. (2014). Age-related changes in urinary testosterone levels suggest differences in puberty onset and divergent life history strategies in bonobos and chimpanzees. Hormones and Behaviour, 66, 525533. https://doi.org/10.1016/j.yhbeh.2014.07.011Google Scholar
Behringer, V., Hohmann, G., Stevens, J. M. G., Weltring, A. & Deschner, T. (2012). Adrenarche in bonobos (Pan paniscus): Evidence from ontogenetic changes in urinary dehydroepiandrosterone-sulfate levels. Journal of Endocrinology, 214, 5565. https://doi.org/10.1530/JOE–12–0103Google Scholar
Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. (2017). Validation of a method for the assessment of urinary neopterin levels to monitor health status in non-human-primate species. Frontiers of Physiology, 8, 111. https://doi.org/10.3389/fphys.2017.00051Google Scholar
Cox, K. L., Devanarayan, V., Kriauciunas, A., Manetta, J., Montrose, C. & Sittampalam, S. (2004). Immunoassay methods. In Sittampalam, G. S., Coussens, N. P., Nelson, H., Arkin, M., Auld, D., Austin, C., et al. (eds.), Assay Guidance Manual. Bethesda: Eli Lilly & Company.Google Scholar
Crockford, C., Wittig, R. M., Langergraber, K., Ziegler, T. E., Zuberbühler, K. & Deschner, T. (2013). Urinary oxytocin and social bonding in related and unrelated wild chimpanzees. Proceedings of the Royal Society B, 280, 1755. https://doi.org/10.1098/rspb.2012.2765Google ScholarPubMed
Cross, T. G. & Hornshaw, M. P. (2016). Can LC and LC-MS ever replace immunoassays? Journal of Applied Bioanalytics, 2, 108116. https://doi.org/10.17145/jab.16.015CrossRefGoogle Scholar
Czekala, N. M., Hodges, J. K. & Lasley, B. L. (1981). Pregnancy monitoring in diverse primate species by estrogen and bioactive luteinizing hormone determinations in small volumes of urine. Journal of Medical Primatology, 10, 115.Google Scholar
Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. (2003). Timing and probability of ovulation in relation to sex skin swelling in wild West African chimpanzees, Pan troglodytes verus.Animal Behaviour, 66, 551560. https://doi.org/10.1006/anbe.2003.2210CrossRefGoogle Scholar
Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. (2004). Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Hormones and Behaviour, 46, 204215. https://doi.org/10.1016/j.yhbeh.2004.03.013Google Scholar
Douglas, P. H., Hohmann, G., Murtagh, R., Thiessen-Bock, R. & Deschner, T. (2016). Mixed messages: Wild female bonobos show high variability in the timing of ovulation in relation to sexual swelling patterns. BMC Evolutionary Biology, 16. https://doi.org/10.1186/s12862-016–0691–3Google Scholar
Emery Thompson, M. (2005). Reproductive endocrinology of wild female chimpanzees (Pan troglodytes schweinfurthii): Methodological considerations and the role of hormones in sex and conception. American Journal of Primatology, 67, 137158. https://doi.org/10.1002/ajp.20174CrossRefGoogle ScholarPubMed
Gröschl, M. (2008). Current status of salivary hormone analysis. Clinical Chemistry, 54, 17591769. https://doi.org/10.1373/clinchem.2008.108910Google Scholar
Habumuremyi, S., Robbins, M. M., Fawcett, K. A. & Deschner, T. (2014). Monitoring ovarian cycle activity via progestagens in urine and feces of female mountain gorillas: A comparison of EIA and LC-MS measurements. American Journal of Primatology, 76, 180191. https://doi.org/10.1002/ajp.22220CrossRefGoogle ScholarPubMed
Hauser, B., Deschner, T. & Boesch, C. (2008). Development of a liquid chromatography–tandem mass spectrometry method for the determination of 23 endogenous steroids in small quantities of primate urine. Journal of Chromatography B, 862, 100112. https://doi.org/10.1016/j.jchromb.2007.11.009CrossRefGoogle ScholarPubMed
Hauser, B., Mugisha, L., Preis, A. & Deschner, T. (2011). LC–MS analysis of androgen metabolites in serum and urine from east African chimpanzees (Pan troglodytes schweinfurthii). General and Comparative Endocrinology, 170, 9298. https://doi.org/10.1016/j.ygcen.2010.09.012Google Scholar
Heistermann, M., Palme, R. & Ganswindt, A. (2006). Comparison of different enzyme immunoassays for assessment of adrenocortical activity in primates based on fecal analysis. American Journal of Primatology, 68, 257273. https://doi.org/10.1002/ajp.20222Google Scholar
Hodges, J. K., Czekala, N. M. & Lasley, B. L. (1979). Estrogen and luteinizing hormone secretion in diverse primate species from simplified urinary analysis. Journal of Medical Primatology, 8, 349364.Google Scholar
Leendertz, S. A. J., Metzger, S., Skjerve, E., Deschner, T., Boesch, C., Riedel, J., et al. (2010). A longitudinal study of urinary dipstick parameters in wild chimpanzees (Pan troglodytes verus) in Côte d’Ivoire. American Journal of Primatology, 72, 689698. https://doi.org/10.1002/ajp.20825CrossRefGoogle ScholarPubMed
Löhrich, T., Behringer, V., Wittig, R.M., Deschner, T. & Leendertz, F.H. (2018). The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth, 15, 792–803. https://doi.org/10.1007/s10393-018–1357–yCrossRefGoogle ScholarPubMed
Moscovice, L. R., Deschner, T. & Hohmann, G. (2015). Welcome back: responses of female bonobos (Pan paniscus) to fusions. PLoS ONE, 10, e0127305. https://doi.org/10.1371/journal.pone.0127305CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Watts, D. P. & Whitten, P. L. (2004). Dominance rank and fecal testosterone levels in adult male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. American Journal of Primatology, 64, 7182. https://doi.org/10.1002/ajp.20062Google Scholar
Muller, M. N. & Lipson, S. F. (2003). Diurnal patterns of urinary steroid excretion in wild chimpanzees. American Journal of Primatology, 60, 161166. https://doi.org/10.1002/ajp.10103Google Scholar
Muller, M. N. & Wrangham, R. W. (2004a). Dominance, cortisol and stress in wild chimpanzees (Pan troglodytes schweinfurthii). Behavioural Ecology and Sociobiology, 55, 332340. https://doi.org/10.1007/s00265-003–0713–1Google Scholar
Muller, M. N. & Wrangham, R. W. (2004b). Dominance, aggression and testosterone in wild chimpanzees: A test of the ‘challenge hypothesis’. Animal Behaviour, 67, 113123. https://doi.org/10.1016/j.anbehav.2003.03.013CrossRefGoogle Scholar
Murtagh, R., Behringer, V. & Deschner, T. (2013). LC-MS as a method for non-invasive measurement of steroid hormones and their metabolites in urine and faeces of animals. Veterinary Medicine Austria, 100, 247254.Google Scholar
Palme, R. (2005). Measuring fecal steroids: Guidelines for practical application. Annals of the New York Academy of Sciences, 1046, 7580. https://doi.org/10.1196/annals.1343.007Google Scholar
Preis, A., Mugisha, L., Hauser, B., Weltring, A. & Deschner, T. (2011). Androgen and androgen metabolite levels in serum and urine of East African chimpanzees (Pan troglodytes schweinfurthii): Comparison of EIA and LC–MS analyses. General and Comparative Endocrinology, 174, 335343. https://doi.org/10.1016/j.ygcen.2011.09.010Google Scholar
Preis, A., Samuni, L., Mielke, A., Deschner, T., Crockford, C. & Wittig, R. M. (2018). Urinary oxytocin levels in relation to post-conflict affiliations in wild male chimpanzees (Pan troglodytes verus). Hormones and Behaviour, 105, 2840. https://doi.org/10.1016/j.yhbeh.2018.07.009CrossRefGoogle ScholarPubMed
Samuni, L., Preis, A., Deschner, T., Crockford, C. & Wittig, R. M. (2018a). Reward of labor coordination and hunting success in wild chimpanzees. Communications Biology, 1, 138. https://doi.org/10.1038/s42003-018–0142–3Google Scholar
Samuni, L., Preis, A., Deschner, T., Wittig, R. M. & Crockford, C. (2019). Cortisol and oxytocin show independent activity during chimpanzee intergroup conflict. Psychoneuroendocrinology, 104, 165173. https://doi.org/10.1016/j.psyneuen.2019.02.007CrossRefGoogle ScholarPubMed
Samuni, L., Preis, A., Mielke, A., Deschner, T., Wittig, R. M. & Crockford, C. (2018b). Social bonds facilitate cooperative resource sharing in wild chimpanzees. Proceedings of the Royal Society B, 285, 1888. https://doi.org/10.1098/rspb.2018.1643Google ScholarPubMed
Samuni, L., Preis, A., Mundry, R., Deschner, T., Crockford, C. & Wittig, R. M. (2017). Oxytocin reactivity during intergroup conflict in wild chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 114, 268273. https://doi.org/10.1073/Proceedings of the National Academy of Sciences of the United States of America.1616812114Google Scholar
Seraphin, S., Whitten, P. & Reynolds, V. (2006). The interaction of hormones with ecological factors in male Budongo forest chimpanzees. In Newton-Fisher, N. E., Notman, H., Paterson, J. D. & Reynolds, V. (eds.), Primates of Western Uganda (pp. 93104). New York: Springer.Google Scholar
Shideler, S. E., Czekala, N. M., Kasman, L. H., Lindburg, D. G. & Lasley, B. L. (1983). Monitoring ovulation and implantation in the lion-tailed macaque (Macaca silenus) through urinary estrone conjugate evaluations. Biology of Reproduction, 29, 905911. https://doi.org/10.1095/biolreprod29.4.905Google Scholar
Sonnweber, R., Araya-Ajoy, Y. G., Behringer, V., Deschner, T., Tkaczynski, P., Fedurek, P., et al. (2018). Circadian rhythms of urinary cortisol levels vary between individuals in wild male chimpanzees: A reaction norm approach. Frontiers of Ecology and Evolution, 6. https://doi.org/10.3389/fevo.2018.00085Google Scholar
Stumpf, R. M. & Boesch, C. (2005). Does promiscuous mating preclude female choice? Female sexual strategies in chimpanzees (Pan troglodytes verus) of the Taï National Park, Côte d’Ivoire. Behavioural Ecology and Sociobiology, 57, 511524. https://doi.org/10.1007/s00265-004–0868–4Google Scholar
Stumpf, R. M. & Boesch, C. (2006). The efficacy of female choice in chimpanzees of the Taï Forest, Côte d’Ivoire. Behavioural Ecology and Sociobiology, 60, 749765. https://doi.org/10.1007/s00265-006–0219–8CrossRefGoogle Scholar
Surbeck, M., Deschner, T., Schubert, G., Weltring, A. & Hohmann, G. (2012a). Mate competition, testosterone and intersexual relationships in bonobos, Pan paniscus. Animal Behaviour, 83, 659669. https://doi.org/10.1016/j.anbehav.2011.12.010Google Scholar
Surbeck, M., Deschner, T., Weltring, A. & Hohmann, G. (2012b). Social correlates of variation in urinary cortisol in wild male bonobos (Pan paniscus). Hormones and Behaviour, 62, 2735. https://doi.org/10.1016/j.yhbeh.2012.04.013Google Scholar
Wasser, S. K., Monfort, S. L. & Wildt, D. E. (1991). Rapid extraction of faecal steroids for measuring reproductive cyclicity and early pregnancy in free-ranging yellow baboons (Papio cynocephalus cynocephalus). Reproduction, 92, 415423. https://doi.org/10.1530/jrf.0.0920415Google Scholar
Wasser, S. K., Risler, L. & Steiner, R. A. (1988). Excreted steroids in primate feces over the menstrual cycle and pregnancy. Biology of Reproduction, 39, 862872. https://doi.org/10.1095/biolreprod39.4.862CrossRefGoogle ScholarPubMed
Weltring, A., Schaebs, F. S., Perry, S. E. & Deschner, T. (2012). Simultaneous measurement of endogenous steroid hormones and their metabolites with LC–MS/MS in faeces of a New World primate species, Cebus capucinus. Physiology and Behaviour, 105, 510521. https://doi.org/10.1016/j.physbeh.2011.09.004CrossRefGoogle ScholarPubMed
Wessling, E. G., Deschner, T., Mundry, R., Pruetz, J. D., Wittig, R. M. & Kühl, H. S. (2018a). Seasonal variation in physiology challenges the notion of chimpanzees (Pan troglodytes verus) as a forest-adapted species. Frontiers of Ecology and Evolution, 6. https://doi.org/10.3389/fevo.2018.00060Google Scholar
Wessling, E. G., Kühl, H.S., Mundry, R., Deschner, T. & Pruetz, J. D. (2018b). The costs of living at the edge: Seasonal stress in wild savanna-dwelling chimpanzees. Journal of Human Evolution, 121, 111. https://doi.org/10.1016/j.jhevol.2018.03.001Google Scholar
Wittig, R. M., Crockford, C., Deschner, T., Langergraber, K. E., Ziegler, T. E. & Zuberbühler, K. (2014). Food sharing is linked to urinary oxytocin levels and bonding in related and unrelated wild chimpanzees. Proceedings of the Royal Society B, 281(1778). https://doi.org/10.1098/rspb.2013.3096Google Scholar
Wittig, R. M., Crockford, C., Weltring, A., Deschner, T. & Zuberbühler, K. (2015). Single aggressive interactions increase urinary glucocorticoid levels in wild male chimpanzees. PLoS ONE, 10, e0118695. https://doi.org/10.1371/journal.pone.0118695Google Scholar
Wittig, R. M., Crockford, C., Weltring, A., Langergraber, K. E., Deschner, T. & Zuberbühler, K. (2016). Social support reduces stress hormone levels in wild chimpanzees across stressful events and everyday affiliations. Nature Communications, 7, 13361, 18. https://doi.org/10.1038/ncomms13361Google Scholar
Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. (2018). Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Scientific Reports, 8. https://doi.org/10.1038/s41598-018–31563–7Google ScholarPubMed
Ziegler, T.E ., Sholl, S. A., Scheffler, G., Haggerty, M. A. & Lasley, B. L. (1989). Excretion of estrone, estradiol, and progesterone in the urine and feces of the female cotton-top tamarin (Saguinus oedipus oedipus). American Journal of Primatology, 17, 185195. https://doi.org/10.1002/ajp.1350170302Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×