Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-21T02:55:19.999Z Has data issue: false hasContentIssue false

The Inner Structure of Cold Dark Matter Halos

Published online by Cambridge University Press:  26 May 2016

Julio F. Navarro*
Affiliation:
Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1, Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I report on recent progress in our understanding of the structure of CDM halos, and in particular of the inner mass profile of galaxy-sized systems. Numerical simulations have consistently shown that the density profiles of CDM halos steepen monotonically from the center outwards, with slopes shallower than isothermal near the center and steeper than isothermal near the virial radius. Ongoing debate centers on the precise radial dependence of the logarithmic slope, as well as on whether it approaches a well defined asymptotic central value. The latest high-resolution simulations suggest that the circular velocity profile is well approximated by the model proposed by Navarro, Frenk & White (NFW). On the other hand, the radial dependence of the slope of the density profile differs modestly, but significantly, from the model proposed by NFW. As a result, NFW fits tend to underestimate the density at radii just inside the scale radius. Rather than implying a very steep (ρ ∝ r-1.5) inner divergent slope, I argue that the data is actually best represented by a model where the density profile becomes increasingly shallow with radius, with little sign of approach to a well-defined asymptotic value. A model where the phase-space density profile is a power law accounts well for these results and suggests that the innermost slope may be as shallow as ρ ∝ r-0.75. These conclusions are supported by a thorough numerical convergence study that elucidates the effect of numerical parameters such as the timestep, gravitational softening, and particle number, on the mass profile of simulated dark matter halos.

Type
Cosmology
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Bertschinger, E. 1985, ApJS, 58, 39 CrossRefGoogle Scholar
Cole, S. & Lacey, C. 1996, MNRAS, 281, 716 Google Scholar
Crone, M. M., Evrard, A. E., & Richstone, D. O. 1994, ApJ, 434, 402 Google Scholar
de Blok, W. J. G., McGaugh, S. S., Bosma, A., & Rubin, V. C. 2001, ApJ, 552, L23 CrossRefGoogle Scholar
Dubinski, J. & Carlberg, R. G. 1991, ApJ, 378, 496 Google Scholar
Evans, N. W. & Collett, J. L. 1997, ApJ, 480, L103 Google Scholar
Fillmore, J. A. & Goldreich, P. 1984, ApJ, 281, 1 Google Scholar
Flores, R. A. & Primack, J. R. 1994, ApJ, 427, L1 Google Scholar
Frenk, C. S., White, S. D. M., Davis, M., & Efstathiou, G. 1988, ApJ, 327, 507 CrossRefGoogle Scholar
Fukushige, T. & Makino, J. 1997, ApJ, 477, L9 Google Scholar
Fukushige, T. & Makino, J. 2001, ApJ, 557, 533 Google Scholar
Ghigna, S., Moore, B., Governato, F., Lake, G., Quinn, T., & Stadel, J. 2000, ApJ, 544, 616 CrossRefGoogle Scholar
Gunn, J. E. & Gott, J. R. I. 1972, ApJ, 176, 1 CrossRefGoogle Scholar
Hoffman, Y. & Shaham, J. 1985, ApJ, 297, 16 CrossRefGoogle Scholar
Huss, A., Jain, B., Steinmetz, M., 1999, MNRAS, 308, 1011 Google Scholar
Jing, Y. P. & Suto, Y. 2000, ApJ, 529, L69 Google Scholar
Lokas, E. L. & Hoffman, Y. 2000, ApJ, 542, L139 Google Scholar
McGaugh, S. S. & de Blok, W. J. G. 1998, ApJ, 499, 41 CrossRefGoogle Scholar
de Blok, W. J. G., McGaugh, S. S., Bosma, A., & Rubin, V. C. 2001, ApJ, 552, L23 Google Scholar
Moore, B. 1994, Nature, 370, 629 Google Scholar
Moore, B., Governato, F., Quinn, T., Stadel, J., Lake, G., 1998, ApJ, 499, L5 Google Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., Tozzi, P., 1999, ApJ, 524, L19 CrossRefGoogle Scholar
Navarro, J.F., Frenk, C.S., White, S.D.M., 1996, ApJ, 462, 563 Google Scholar
Navarro, J.F., Frenk, C.S., White, S.D.M., 1997, ApJ, 490, 493 Google Scholar
Nusser, A. & Sheth, R. K. 1999, MNRAS, 303, 685 Google Scholar
Power, C., Navarro, J.F., Jenkins, A., Frenk, C.S., White, S.D.M., Springel, V., Stadel, J., Quinn, T.R. 2001, ApJS, in preparation.Google Scholar
Quinn, P. J., Salmon, J. K., & Zurek, W. H. 1986, Nature, 322, 329.Google Scholar
Syer, D. & White, S. D. M. 1998, MNRAS, 293, 337 Google Scholar
Taylor, J.E., & Navarro, J.F. 2001, ApJ, in press.Google Scholar
van den Bosch, F. C. & Swaters, R. A. 2001, MNRAS, 325, 1017 Google Scholar
van den Bosch, F.C., Robertson, B.E., Dalcanton, J.J., de Blok, W.J.G., 2000, AJ, 119, 1579 Google Scholar
White, S. D. M. & Zaritsky, D. 1992, ApJ, 394, 1.Google Scholar