Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-05T03:01:42.474Z Has data issue: false hasContentIssue false

Impact of habitat degradation on species diversity and nest abundance of five African stingless bee species in a tropical rainforest of Kenya

Published online by Cambridge University Press:  17 August 2017

Nkoba Kiatoko*
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
Suresh Kumar Raina
Affiliation:
International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
Frank van Langevelde
Affiliation:
Resource Ecology Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
*
Get access

Abstract

Natural habitat degradation often involves the reduction or disappearance of bee species. In Africa, stingless bees are hunted for honey, which is used as food, for medicinal purposes, and for traditional rituals. Severe habitat degradation due to human settlement is hypothesized to have a negative impact on the species diversity of the African stingless bee species. In this paper, we assess the impact of habitat degradation on the diversity of five stingless bee species across different habitats in the tropical rainforest of Kenya (indigenous forest, mixed indigenous forest) and its neighbouring landscape (grassland, village) in western Kenya. The species fauna, nest occurrence, and species diversity of the stingless bee species varied across the different habitats. The number of nesting habitats of the meliponine species varied between habitats in the tropical rainforest. Meliponula ferruginea (reddish brown) nested in five habitats, while Meliponula bocandei and Meliponula ferruginea (black) nested only in two habitat types. The species richness decreased within the different types of habitats and the indigenous and mixed indigenous forest contained more species than other habitats. The fauna composition in both homesteads was exclusively similar, while the indigenous and mixed indigenous forests were mostly similar. Similarity in habitat preferences for nesting was revealed between M. bocandei vs Plebeina hildebrandti and M. ferruginea (reddish brown) vs Hypotrigona gribodoi. The natural native indigenous forest had the most diverse community compared to the degraded habitats. There are taxon-specific responses to habitat change; and in our study, there is clear value in conserving the native indigenous forest.

Type
Research Paper
Copyright
Copyright © icipe 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayuke, F. O., Karanja, N. K., Muya, E. M., Musombi, B. K., Mungatu, J. and Nyamasyo, G. H. N. (2009) Macrofauna diversity and abundance across different land use systems in Embu, Kenya. Tropical and Subtropical Agroecosystems 11, 371384.Google Scholar
Bommarco, R., Biesmeijer, J. C., Meyer, B., Potts, S. G., Pöyry, J., Roberts, S. P. M., Steffan Dewenter, I. and Öckinger, E. (2010) Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society of London B: Biological Sciences 277, 20752082.Google ScholarPubMed
Boontop, Y., Malaipan, S., Chareansom, K. and Wiwatwittaya, D. (2008) Diversity of stingless bees (Apidae: Meliponini) in Thong Pha Phum District, Kanchanaburi Province, Thailand. The Kasetsart Journal (Natural Science) 42, 444456.Google Scholar
Brosi, B. J. (2009) The complex responses of social stingless bees (Apidae: Meliponini) to tropical deforestation. Forest Ecology and Management 258, 18301837.Google Scholar
Brosi, B. J., Daily, G. C. and Ehrlich, P. (2007) Bee community shifts with landscape context in a tropical countryside. Ecological Applications 17, 418430.CrossRefGoogle Scholar
Brosi, B. J., Daily, G. C., Shih, T. M., Oviedo, F. and Duràn, G. (2008) The effects of forest fragmentation on bee communities in tropical countryside. Journal of Applied Ecology 45, 773783.Google Scholar
Canard, A. and Poinsot, D. (2004) Quelques méthods statistiques: typiques de l’étude des populations et des peuplements par la méthod des quadrats. Available online: https://perso.univ-rennes1.fr/denis.poinsot/POP/Rapport_Penvins/instructions_et_conseils/poly%20Canard.pdf Google Scholar
Cortopassi-Laurino, M., Imperatriz-Fonseca, V. L., Roubik, D. W., Dollin, A., Heard, T., Aguilar, I. B., Venturieri, G. C., Eardley, C. and Nogueira-Neto, P. (2006) Global meliponiculture: challenges and opportunities. Apidologie 37, 275292.Google Scholar
Eardley, C. D. (2004) Taxonomic revision of the African stingless bees (Apoidea: Apidae: Apinae: Meliponini). African Plant Protection 10, 6396.Google Scholar
Eltz, T., Bruhl, C. A., Imiyabir, Z. and Linsenmair, K. E. (2003) Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, with implications for forest management. Forest Ecology and Management 172, 301313.Google Scholar
Hubbell, S. P. and Johnson, L. K. (1977) Competition and nest spacing in a tropical stingless bee community. Ecology 58, 949963.CrossRefGoogle Scholar
Jongjitvimol, T., Boontawon, K., Wattanachaiyingcharoen, W. and Deowanish, S. (2005) Nest dispersion of a stingless bee species, Trigona collina Smith, 1857 (Apidae, Meliponinae) in a mixed deciduous forest in Thailand. The Natural History Journal of Chulalongkorn University 5, 6971.Google Scholar
Kajobe, R. (2007) Nesting biology of equatorial Afrotropical stingless bees (Apidae; Meliponini) in Bwindi Impenetrable National Park, Uganda. Journal of Apicultural Research 46, 245255. doi: 10.3896/IBRA.1.46.4.07.CrossRefGoogle Scholar
Kiatoko, N., Raina, S. K, Muli, E., Klaus, M. and Mueke, J. (2012) Species richness and nest dispersion of some tropical meliponine bees (Apidae: Meliponinae) in six habitat types in the Kakamega forest, western Kenya. International Journal of Tropical Insect Science 32, 194202. doi: 10.1017/S1742758412000355.Google Scholar
Kenya Indigenous Forest Conservation Programme (KIFCON) (1994) Kenya Indigenous Forest Conservation Programme. Phase 1 report. Karura Forest Station, Centre for Biodiversity, Nairobi.Google Scholar
Kindt, R. and Coe, R. (2005) Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. World Agroforestry Centre (ICRAF), Nairobi. 207 pp.Google Scholar
Kokwaro, J. O. (1988) Conservation status of Kakamega forest in Kenya. The Eastern most relic of the equatorial rain forest of Africa. Monographs in Systematic Botany from the Missouri Botanical Garden 25, 471489.Google Scholar
Krebs, C. J. (1999) Ecological Methodology. 2nd edn. Adison-Wesley Publishers, Menlo Park, CA, USA. 620 pp.Google Scholar
Lepeletier de Saint-Fargeau, A. L. M. (1841) Histoire Naturelle des Insectes. Hyménoptères Suites à Buffon. Roret 2, Paris. 680 pp.Google Scholar
Mbahin, N. (2008) The ecology and economic potential of wild silkmoth Anaphe panda (Boisduval) (Lepidoptera: Thaumetopoeidae) in the Kakamega forest. PhD thesis, Kenyatta University, Nairobi, Kenya. 191 pp.Google Scholar
Michener, C. D. (2000) The Bees of the World. Johns Hopkins University Press, USA. 913 pp.Google Scholar
Nates-Parra, G., Palacios, E. and Parra, H. A. (2008) Effect of landscape change on the structure of the sting-less bee community (Hymenoptera: Apidae) in Meta, Colombia. Revista de Biología Tropical 56, 12951308.Google Scholar
Otieno, N. A., Le Ru, B. P., Ong'amo, G. O., Moyal, P., Dupas, S., Calatayud, P. A. and Silvain, J. F. (2008) Diversity and abundance of wild host plants of lepidopteran stem borers in two agroecological zones of Kenya. The International Journal of Biodiversity Science and Management 4, 92103. doi: 10.3843/Biodiv.4.2:3.Google Scholar
Pyper, W. (2001). Six-legged friends. Ecos 107, 1617.Google Scholar
Rasmussen, C. (2009) Diversity and abundance of orchid bees (Hymenoptera: Apidae, Euglossini) in a tropical rainforest succession. Neotropical Entomology 38, 6673.Google Scholar
R Development Core Team (2005) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R–project.org Google Scholar
Ricketts, T. H. (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conservation Biology 18, 12621271.Google Scholar
Roubik, W. D. (1989) Ecology and Natural History of Tropical Bees. Cambridge University Press, New York. 514 pp.CrossRefGoogle Scholar
Samejima, H., Marzuki, M., Nagamitsu, T. and Nakasizuka, T. (2004) The effects of human disturbance on a stingless bee community in a tropical rainforest. Biological Conservation 120, 577587.CrossRefGoogle Scholar
Smith, F. G. (1854) Catalogue of the Hymenopterous Insects in the Collection of the British Museum. Part II. Apidae. British Museum, London. 409 pp.Google Scholar
Tóthmérész, B. (1995) Comparison of different methods for diversity ordering. Journal of Vegetation Science 6, 283290.Google Scholar
Tsingalia, H. M. (1988) Animals and the regeneration of a canopy tree in an African tropical forest. PhD thesis, University of California, Berkeley, USA.Google Scholar
Tsingalia, H. M. (1990) Habitat disturbance, severity and patterns of abundance in Kakamega Forest, western Kenya. African Journal of Ecology 28, 213226. doi:10.1111/j.1365-2028.1990.tb01154.x.Google Scholar
Tsingalia, H. M. and Kassily, F. N. (2009) The origins of Kakamega Forest grasslands: A critical review. Journal of Human Ecology 27, 129135.CrossRefGoogle Scholar
Velthuis, H. H. W. (1997) The Biology of Stingless Bees. Utrecht University Press, Utrecht, The Netherlands. 33 pp.Google Scholar
Winfree, R., Griswold, T. and Kremen, C. (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conservation Biology 21, 213223.Google Scholar