Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-27T23:55:19.475Z Has data issue: false hasContentIssue false

Commutative Banach Algebras with Idempotent Maximal Ideals

Published online by Cambridge University Press:  09 April 2009

R. J. Loy
Affiliation:
Monash University Clayton, VictoriaAustralia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be a commutative Banach algebra over the complex field C, M an ideal of . Denote by M2 the set of all finite linear combinations of products of elements from M. M will be termed idempotent if M2 = M. The purpose of this paper is to investigate the structure of commutative Banach algebras in which all maximal ideals are idempotent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1969

References

[1]Arens, R., ‘A Banach algebra generalization of conformal mappings of the disc’, Trans. Amer. Math. Soc. 81 (1956), 501513.CrossRefGoogle Scholar
[2]Arens, R. and Kaplansky, I., ‘Topological representation of algebras’, Trans. Amer. Math. Soc. 63 (1948), 457481.CrossRefGoogle Scholar
[3]Artin, E., Nesbitt, C. J. and Thrall, R. M., Rings with Minimum Condition (University of Michigan Press, Ann Arbor, 1961).Google Scholar
[4]Barnes, B. A., ‘Modular annihilator algebras’, Can. J. Math. 18 (1966), 566578.CrossRefGoogle Scholar
[5]Cohen, P., ‘Factorization in group algebras’, Duke Math. J. 26 (1959), 199205.CrossRefGoogle Scholar
[6]Feldman, C., ‘The Wedderburn principal theorem in Banach algebras’, Proc. Amer. Math. Soc. 2 (1951), 771777.CrossRefGoogle Scholar
[7]Gelfand, I., Raikov, D. and Shilov, G., Commutative Normed Rings (Chelsea, 1964).Google Scholar
[8]Hoffman, K., Banach Spaces of Analytic Functions (Prentice-Hall Inc., 1962).Google Scholar
[9]Kaplansky, I., ‘Regular Banach algebras’, J. Indian Math. Soc. (N.S.), 12 (1948), 5762.Google Scholar
[10]Kaplansky, I., ‘Functional Analysis’, in Some Aspects of Analysis and Probability (Surveys in Applied Mathematics, Vol. 4, John Wiley & Sons, New York, 1958), 336.Google Scholar
[11]Naimark, M. A., Normed Rings Noordoff, Groningen, Netherlands, 1964).Google Scholar
[12]Nakano, N., ‘Über idempotente Ideale in unendlichen algebraischen Zahlkörpern’, J. Sci. Hiroshima Univ. A, 17 (1953), 1120.Google Scholar
[13]Satyanarayana, M., ‘Rings with primary ideals as maximal ideals’, Math. Scand. 20 (1967), 5254.CrossRefGoogle Scholar
[14]Sherbert, D. R., ‘The structure of ideals and point derivations in Banach algebras of Lipschitz functions’, Trans. Amer. Math. Soc. 111 (1964), 240272.CrossRefGoogle Scholar
[15]Singer, I. M. and Wermer, J., ‘Derivations on commutative normed algebras’, Math. Ann. 129 (1955), 260264.CrossRefGoogle Scholar
[16]Yood, B., ‘Ideals in topological algebras’, Can. J. Math. 16 (1964), 2845.CrossRefGoogle Scholar
[17]Zariski, O., and Samuel, P., Commutative Algebra, Vol.1 (Van Nostrand Inc., Princeton, 1963).Google Scholar