Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-22T14:04:32.570Z Has data issue: false hasContentIssue false

Serotonin receptors are selectively expressed in the avian germ cells and early embryos

Published online by Cambridge University Press:  13 February 2014

Urszula Stępińska
Affiliation:
Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec n/Warsaw, Magdalenka 05–552, Poland.
Takashi Kuwana
Affiliation:
International Institute of Avian Conservation Science, Abu-Dhabi, United Arab Emirates.
Bożenna Olszańska*
Affiliation:
Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec n/Warsaw, Magdalenka 05-552, Poland.
*
All correspondence to: B. Olszańska. Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec n/Warsaw, Magdalenka 05-552, Poland. Tel: +48 22 736 70 33. e-mail: B.Olszanska@ighz.pl

Summary

The expression of nine serotonin (5-HT) receptor transcripts was studied using reverse transcription polymerase chain reaction (RT-PCR) in germ cells, cleavage and gastrulation stages of Japanese quail, and qPCR for 5-HT3 and 5-HT4 receptors in oocytes and embryos. We show the presence/absence of nine serotonin transcripts known in birds for receptors 5-HT1A, 5-HT1F, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, 5-HT6 and 5-HT7A in avian germ cells and early embryos. The absence of 5-HT3 and 5-HT5A in primordial germ cells and of 5-HT3 and 5-HT7A in sperm is characteristic. All transcripts appeared in oocytes at all stages (except for 5-HT3 and 5-HT5A transcripts) and all were present in cleaving embryos and at gastrulation, except for 5-HT3, which was permanently observed as late as in stage 4. Interestingly, 5-HT3 and 5-HT5A receptors accumulated in 3-mm and F1 oocytes but were degraded at ovulation and started to be re-transcribed in cleavage stage II embryos and beyond. The selective appearance of 5-HT receptors in germ cells and early embryos supports the hypothesis that serotonin may act as a signalling molecule at early stages of germ line and embryo differentiation via individual receptors present during different stages, when specialized communication systems are not yet developed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amireault, P. & Dube, F. (2005a). Intracellular cAMP and calcium signaling by serotonin in mouse cumulus-oocyte complexes. Mol. Pharm. 68, 1678–87.Google Scholar
Amireault, P. & Dube, F. (2005b). Serotonin and its antidepressant-sensitive transport in mouse cumulus-oocyte complexes and early embryos. Biol. Reprod. 73, 358–65.Google Scholar
Arendt, J. & Rajaratnam, S.M. (2008). Melatonin and its agonists: an update. Br. J. Psych. 193, 267–9.Google Scholar
Azmitia, E.C. (2001). Modern views on an ancient chemical: Serotonin effect on cell proliferation, maturation and apoptosis. Brain Research Bull. 56, 413–24.CrossRefGoogle Scholar
Bachvarova, R., De Leon, V., Johnson, A., Kaplan, G. & Paynton, B.V. (1985). Changes in total, polyadenylated RNA and actin mRNA during meiotic maturation of mouse oocytes. Dev. Biol. 108, 325–31.Google Scholar
Barnes, N.N. & Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–152.Google Scholar
Barnes, N.M., Hales, T.G., Lummis, S.C.R. & Peters, J.A. (2009), The 5-HT3 receptor – the relation between structure and function. Neuropharmacology 56, 273–84.Google Scholar
Basu, B., Desai, R., Balaji, J., Chaerkady, R., Sriram, V., Maiti, S. & Panicker, M.M. (2008). Serotonin in pre-implantation mouse embryos is localized to mitochondria and can modulate mitochondrial potential. Reprod. Res. 135, 657–69.Google Scholar
Bertrand, P.P., Bertrand, R.L, Camello, P.J. & Pozo, M.J. (2010). Simultaneous measurement of serotonin and melatonin from the intestine of old mice: the effects of daily melatonin supplementation. J. Pineal Res. 49, 2334.CrossRefGoogle ScholarPubMed
Beyer, T., Danilchik, M., Thumberger, T., Vick, P., Tisler, M., Schneider, I., Bogush, S., Andre, P., Ulmer, B., Walentek, P., Niesler, B., Blum, M., Schweickert, S., (2012). Serotonin signaling is required for Wnt-dependent GRP specification and leftward flow in Xenopus . Curr. Biol. 22, 33–9.CrossRefGoogle ScholarPubMed
Bijak, M. (2004). Receptory serotoninowe. In Receptory i Mechanizmy Przekazywania Sygnału [Receptors and Mechanisms of Signal Transmission] (eds. Nowak, J.Z & Zawilska, J.B), pp. 304–21. Warszawa: PWN [in Polish].Google Scholar
Bodis, J., Bognar, Z., Hartmann, G., Torok, A. & Csaba, I.F. (1992). Measurement of noradrenaline, dopamine and serotonin contents in follicular fluid of human graafian follicles after superovulation treatment. Gynecol. Obstet. Invest. 33, 165–7.Google Scholar
Buznikov, G.A., Lambert, H.W. & Lauder, J.M. (2001). Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. Cell Tissue Res. 305, 177–86.Google Scholar
Callebaut, M. (1973). Correlation between germinal vesicle and oocyte development in the adult Japanese quail (Coturnix coturnix japonica): a cytochemical and autoradiographic study. J. Embryol. Exp. Morph. 29, 145–57.Google Scholar
Chattoraj, A., Seth, M. & Maitra, S.K. (2008). Influence of serotonin on the action of melatonin in MIH-induced meiotic resumption in the oocytes of carp Catla catla . Comp. Biochem. Physiol. Part A. 150, 301–6.Google Scholar
Choi, D-S., Ward, S.J., Messaddeq, N., Launay, J-M. & Maroteau, L. (1997). 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development 124, 1745–55.CrossRefGoogle ScholarPubMed
Côté, F., Fligny, C., Bayard, E., Launay, J-M., Gershon, M. & Mallet, J. (2007). Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. USA 104, 329–34.Google Scholar
Dauchy, R.T., Blask, D.E., Dauchy, E.M., Davidson, L.K., Tirell, P.C., Greene, M.W., Tirell, R.P., Hill, C.R. & Sauer, L.A. (2009). Antineoplastic effects of melatonin on a rare malignancy of mesenchymal origin: melatonin-mediated inhibition of signal transduction, linoleic acid metabolism and growth in tissue-isolated human leiomyosarcoma xenografts. J. Pineal. Res. 47, 3242.Google Scholar
Dube, F. & Amireault, P. (2007). Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci. 81, 1627–37.Google Scholar
Emanuelsson, H., Carlberg, M. & Lowkvist, B. (1988). Presence of serotonin in early chick embryos. Cell Differ. 24, 191–9.Google Scholar
Eyal-Giladi, H. & Kochav, S. (1976). From cleavage to primitive streak formation. A complementary normal tables and new look at the first stages of the development of the chick. I. General morphology Dev. Biol. 49, 321–37.Google Scholar
Fujinoki, M. (2011). Serotonin-enhanced hyperactivation of hamster sperm. Reproduction 142, 255–66.CrossRefGoogle ScholarPubMed
Fukumoto, T., Kema, I.P. & Levin, M. (2005). Serotonin signaling in a very early step in patterning of the left-right axis in chick and frog embryos. Curr. Biol. 15, 794803.CrossRefGoogle Scholar
Gaspar, P., Cases, O. & Maroteaux, L. (2003). The developmental role of serotonin: News from mouse molecular genetics. Nature Rev. Neurosci. 4. 1002–12.Google Scholar
Hamburger, V. & Hamilton, H.L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 4992.Google Scholar
Hardeland, R. (2009). Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors 35, 183–92.Google Scholar
Il'kova, G., Rehak, P., Vesela, J., Cikos, S., Fabian, D., Czikkova, S. & Koppel, J. (2004). Serotonin localization and its functional significance during mouse preimplantation embryo development. Zygote 12, 205–13.Google Scholar
Jimenez-Trejo, F., Tapia-Rodriguez, M., Queiroz, D.B.C., Padilla, P., Avellar, M.C.W., Rovas Manzano, P., Manjarrez-Gutierrez, G. & Gutierrez-Ospina, G. (2007). Serotonin concentration, synthesis, cell origin, and targets in the rat caput epididymis during sexual maturation and variations associated with adult mating status: morphological and biochemical studies. J. Androl. 28, 136–49.Google Scholar
Jimenez-Trejo, F., Tapia-Rodriguez, M., Cerbon, M. & Kuhn, D.M., Manjarrez-Gutierrez, G., Mendoza-Rodrigues, C.A. & Picazo, O. (2012). Evidence of 5-HT components in human sperm: implications for protein tyrosine phosphorylation and the physiology of motility. Reproduction 144, 677–85.Google Scholar
Jonnakuty, C. & Gragnoli, C. (2008). What do we know about serotonin? J. Cell. Phys. 217, 301–6.Google Scholar
Kawashima, T., Stępińska, U., Kuwana, T. & Olszańska, B. (2008). Melatonin receptor genes (mel-1a, mel-1b, mel-1c) are differentially expressed in the avian germ line. Mol. Reprod. Dev. 75, 1408–17.Google Scholar
Lauder, J.M. (1993). Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 16, 233–40.CrossRefGoogle ScholarPubMed
Lauder, J.M., Wallace, J.A. & Krebs, H. (1981). Roles for serotonin in neuroembryogenesis. Adv. Exp. Med. Biol. 133, 477506.Google Scholar
Lauder, J.M., Wilkie, M.B., Wu, C. & Singh, S. (2000). Expression of 5-HT2A, 5-HT2B and 5-HT2C receptors in the mouse embryo. Int. J. Dev. Neurosci. 18, 653–62.Google Scholar
Levin, M., Buznikov, G.A. & Lauder, J.M. (2006). Of minds and embryos: left-right asymmetry and the serotoninergic controls of pre-neural morphogenesis. Dev. Neurosci. 28, 171–85.CrossRefGoogle Scholar
Malewska, A. & Olszańska, B. (1999). Accumulation and localisation of maternal RNA in oocytes of Japanese quail. Zygote 7, 51–9.Google Scholar
Meizel, S. & Turner, K.O. (1983). Serotonin or its agonist 5-methoxytryptamine can stimulate hamster sperm acrosome reactions in a more direct manner than catecholamines. J. Exp. Zool. 226, 171–4.Google Scholar
Millan, M.J., Marin, P., Kamal, M., Jockers, R., Chanrion, B., Labasque, M., Bockaer, J. & Mannoury la Cour, C. (2011). The melatonergic agonist and clinically active antidepressant, agomelatine, is a neutral antagonist at 5-HT2C receptors. Int. J. Neuropsychopharmacol. 14, 768–83.Google Scholar
Miller, D. & Ostermeier, G.C. (2006). Spermatozoal RNA: why is it there and what does it do? Gynecol. Obstet. Fertil. 34, 840–6.Google Scholar
Moudgal, R.P., Panda, J.N. & Mohan, J. (1992). Serotonin in egg yolk and in relation to cage density stress and production status. Indian J. Animal Sci. 62, 147–8.Google Scholar
Nebigil, C.G., Etienne, N., Schaerlinger, B., Hickel, P., Launay, J.M. & Maroteaux, L. (2001). Developmentally regulated serotonin 5-HT2B receptors. Int. J. Dev. Neurosci. 19, 365–72.Google Scholar
Niesler, B., Kapeller, J., Hammer, C. & Rappold, G. (2008). Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics 9. 501–4.Google Scholar
Nikishin, D.A., Kremnyov, S.V., Konduktorova, V.V. & Shmukler, Y.B. (2012). Expression of serotonergic system components during early Xenopus embryogenesis. Int. J. Dev. Biol. 56, 384–91.Google Scholar
Obłap, R. & Olszańska, B. (2001). Expression of melatonin receptor transcripts (mel-1a, mel-1b and mel-1c) in Japanese quail oocytes and eggs. Zygote 9. 237–44.CrossRefGoogle ScholarPubMed
Olszańska, B., Malewska, A. & Stępińska, U. (1996). Maturation and ovulation of Japanese quail oocytes under in vitro conditions. Br. Poultry Sci. 37, 929–35.CrossRefGoogle ScholarPubMed
Olszańska, B., Majewski, P., Lewczuk, B. & Stępińska, U. (2007). Melatonin and its synthesizing enzymes (arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase) in the avian eggs and early embryos. J. Pineal Res. 42, 310–8.Google ScholarPubMed
Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res. 29, 2002–7Google Scholar
Sampaio, L. de Fatima Sobral (2008). Melatonin inhibitory effect on cAMP accumulation in the chick retina development. Int. J. Dev. Neurosci. 26, 277–82.Google Scholar
San, L. & Arranz, B. (2008). Agomelatine: A novel mechanism of antidepressant action involving the melatonergic and the serotonergic system. Eur. Psychiatry 23, 396402.Google Scholar
Sheng, Y., Wang, L., Liu, X.S., Montplaisir, V., Tiberi, M., Baltz, J.B. & Liu, X.J. (2005). A serotonin receptor antagonist induces oocyte maturation in both frogs and mice: Evidence that the same G protein-coupled receptor is responsible for maintaining meiosis arrest in both species. J. Cell. Phys. 202, 777–86.Google Scholar
Shmukler, Y.B., Silvestre, F. & Tosti, E. (2008). 5-HT-receptive structures are localized in the interblastomere cleft of Paracentrotus lividus early embryos. Zygote 16, 7986.Google Scholar
Slanar, O., Pelisek, V. & Vanecek, J. (2000). Melatonin inhibits pituitary adenylyl cyclase-activating polypeptide-induced increase of cyclic AMP accumulation and [Ca2+]i in cultured cells of neonatal rat pituitary. Neurochem. Intern. 36, 213–19.Google Scholar
Stępińska, U. & Olszańska, B. (1983). Cell multiplication and blastoderm development in relation to egg envelope formation during uterine development of quail (Coturnix japonica) embryo. J. Exp. Zool. 228, 505–10.Google Scholar
Thomas, D.R. (2006). 5-HT5A receptors as therapeutic targets. Pharmacol. Ther. 111, 707–14Google Scholar
Vesela, J., Rehak, P., Mihalik, J., Czikkova, S., Pokorny, J. & Koppel, J. (2003). Expression of serotonin receptors in mouse oocytes and preimplantation embryos. Physiol. Res. 52, 223–8.Google Scholar
Wallace, J. (1982). Monoamines in the early chick embryo: demonstration of serotonin synthesis and the regional distribution of serotonin-concentrating cells during morphogenesis. Am. J. Anat. 165, 261–76.Google Scholar
Weitzman, G., Galli, S.J., Dvorak, A.M. & Hammel, I. (1985). Cloned mouse mast cells and normal mouse peritoneal mast cells. Determination of serotonin content and ability to synthesize serotonin in vitro . Int. Arch. Allergy Appl. Immunol. 77, 189–91.Google Scholar
Westbroek, I., Van der Plas, A., Rooij, K.E de., Klein-Nulend, J. & Nijweide, P.J. (2001). Expression of serotonin receptors in bone. J. Biol. Chem. 276, 28961–8.Google Scholar
Wu, C., Dias, P., Kumar, S., Lauder, J.M. & Singh, S. (1999). Differential expression of serotonin 5-HT 2 receptors during rat embryogenesis. Dev. Neurosci. 21, 22–8.Google Scholar
Young, R.J. & Laing, J.C. (1990). Biogenic amine binding sites in rabbit spermatozoa. Biochem. Int. 21, 781–7.Google Scholar
Ziegler, I., Hultner, L., Egger, D., Kempkes, B., Mailhammer, R., Gillis, S. & Rodl, W. (1993). In a concerted action kit ligand and interleukin 3 control the synthesis of serotonin in murine bone marrow-derived mast cells. Up-regulation of GTP cyclohydrolase I and tryptophan 5-monooxygenase activity by the kit ligand. J. Biol. Chem. 268, 12544–51.Google Scholar