Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-24T17:04:01.064Z Has data issue: false hasContentIssue false

Weed Management and Net Returns With Transgenic, Herbicide-Resistant, and Nontransgenic Cotton (Gossypium hirsutum)

Published online by Cambridge University Press:  12 June 2017

A. Stanley Culpepper
Affiliation:
Crop Science Department, North Carolina State University, Box 7620, Raleigh, NC 27695-7620
Alan C. York*
Affiliation:
Crop Science Department, North Carolina State University, Box 7620, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: alan_york@ncsu.edu.

Abstract

Weed management systems were compared in bromoxynil-resistant, glyphosate-resistant, and nontransgenic cotton. A standard system of pendimethalin preplant incorporated (PPI), fluometuron preemergence (PRE), fluometuron plus MSMA early postemergence-directed (POST-DIR), and cyanazine plus MSMA late POST-DIR in combination with cultivation controlled broadleaf signalgrass, large crabgrass, common lambsquarters, jimsonweed, pitted morningglory, prickly sida, sicklepod, and smooth pigweed 98 to 100% late season. Weed control, cotton yield, and net returns were similar when pyrithiobac or bromoxynil plus MSMA postemergence (POST) replaced fluometuron plus MSMA POST-DIR. Fluometuron PRE had little to no effect in bromoxynil systems. Glyphosate POST to three- to four-leaf-stage cotton followed by cyanazine plus MSMA late POST-DIR and cultivation controlled weeds 96 to 100%. Glyphosate POST followed by glyphosate POST-DIR and cultivation controlled pitted morningglory and large crabgrass 89 to 90% and other species at least 94%. Yields and net returns at one location were similar for glyphosate applied twice or glyphosate POST followed by cyanazine plus MSMA POST-DIR and the standard system. Pendimethalin plus fluometuron in glyphosate systems did not increase yield or net returns. At a location severely infested with large crabgrass, pendimethalin plus fluometuron in glyphosate systems increased yield 37 to 44% and net returns 85 to 108%, respectively, when glyphosate was applied to cotton at the three-to four-leaf stage, but not if glyphosate was applied to cotton at the one-leaf stage. Yield and net returns were similar when bromoxynil-resistant, glyphosate-resistant, and nontransgenic cotton were treated using the standard system.

Type
Research
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H., ed. 1994. Herbicide Handbook. 7th ed. Champaign, IL: Weed Science Society of America. 352 p.Google Scholar
Batts, R. B., York, A. C., and Yelverton, F. H. 1998. Potential for Cotoran carryover to flue-cured tobacco. In Dugger, P. and Richter, D. A., eds. Proceedings of the Beltwide Cotton Conferences, San Diego, CA. Jan. 5–9, 1998. Memphis, TN: National Cotton Council of America. p. 873.Google Scholar
Bowman, D. T. 1998. Variety selection. In Edmisten, K. L., ed. 1998 Cotton Information. Raleigh, NC: North Carolina Cooperative Extension Service. pp. 2442.Google Scholar
Brown, B., Cole, T., and Edmisten, K. 1997. Cotton. In North Carolina Farm Enterprise Budget Guidelines. Raleigh, NC: North Carolina Cooperative Extension Service. 76 p.Google Scholar
Brown, S. M., Bridges, D. C., and Brecke, B. J. 1996. Bromoxynil and pyrithiobac combinations with MSMA for sicklepod (Senna obtusifolia) control in cotton. Proc. South. Weed Sci. Soc. 49:5.Google Scholar
Byrd, J. D. Jr. 1995. Herbicide-resistant crops: perspectives from an extension specialist. Proc. South. Weed Sci. Soc. 48:37.Google Scholar
Byrd, J. D. Jr., and York, A. C. 1987. Interaction of fluometuron and MSMA with sethoxydim and fluazifop. Weed Sci. 35:270276.Google Scholar
Culpepper, A. S. and York, A. C. 1997. Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol. 11:335345.Google Scholar
Culpepper, A. S. and York, A. C. 1998. Weed management in glyphosate-tolerant cotton. J. Cotton Sci. 4:174185.Google Scholar
Culpepper, A. S., York, A. C., and Brownie, C. 1998a. Influence of bromoxynil on annual grass control by graminicides. Weed Sci. 47:123128.Google Scholar
Culpepper, A. S., York, A. C., Jennings, K. M., and Batts, R. B. 1998b. Interaction of bromoxynil and postemergence graminicides on large crabgrass (Digitaria sanguinalis), Weed Technol. 12:554559.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Inhibition of amino acid biosynthesis. In Physiology of Herbicide Action. Englewood Cliffs, NJ: Prentice Hall. pp. 252263.Google Scholar
Dowler, C. C. 1995. Weed survey—southern states. Proc. South. Weed Sci. Soc. 48:290325.Google Scholar
Ferreira, K. L. 1993. Characterization of the Antagonistic Interaction between Fluazifop and DPX-PE350. . North Carolina State University, Raleigh, NC. 83 p.Google Scholar
Franz, J. E. 1985. Discovery, development and chemistry of glyphosate. In Grossbard, E. and Atkinson, D., eds. The Herbicide Glyphosate. London: Butterworth and Co. pp. 317.Google Scholar
Franz, J. E., Mao, M. K., and Sikorski, J. A. 1997. Toxicology and environmental properties of glyphosate. In Glyphosate: A Unique Global Herbicide. Washington, DC: American Chemical Society Monogr. 189. pp. 103137.Google Scholar
Guthrie, D. S. and York, A. C. 1989. Cotton (Gossypium hirsutum) development and yield following fluometuron postemergence applied. Weed Technol. 3:501504.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993a. Cotton (Gossypium hirsutum) response to DPX-PE350 applied postemergence. Weed Technol. 7:159162.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993b. Total postemergence herbicide programs in cotton (Gossypium hirsutum) with sethoxydim and DPX-PE350. Weed Technol. 7:196201.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993c. Influence of application rate and timing on efficacy of DPX-PE350 applied postemergence. Weed Technol. 7:216219.CrossRefGoogle Scholar
Jordan, D. L., York, A. C., McClelland, M. R., and Frans, R. E. 1993d. Clomazone as a component in cotton (Gossypium hirsutum) herbicide programs. Weed Technol. 7:202211.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.CrossRefGoogle Scholar
Kalaher, C. J., Coble, H. D., and York, A. C. 1997. Morphological effects of Roundup application timings on Roundup-Ready® cotton. In Dugger, P. and Richter, D. A., eds. Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, Jan. 6–10, 1997. Memphis, TN: National Cotton Council of America. p. 780.Google Scholar
McLaughlin, R. D. 1992. Review of the 1991 field trial results on bromoxynil-tolerant cotton. In Herber, D. J. and Richter, D. A., eds. Proceedings of the Beltwide Cotton Conferences, Nashville, TN, Jan. 7–10, 1991. Memphis, TN: National Cotton Council of America. p. 1316.Google Scholar
Nida, D. L., Kolacz, K. H., Guehler, R. E., et al. 1996. Glyphosate-tolerant cotton: genetic characterization and protein expression. J. Agric. Food Chem. 44:19601966.Google Scholar
Paulsgrove, M., Wilcut, J. W., York, A. C., and Collins, J. 1996. Weed management in southeastern BXN cotton. Proc. South. Weed Sci. Soc. 49:78.Google Scholar
Sasser, P. E. 1981. The basics of high volume instruments for fiber testing. In Brown, J. M., ed. Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, Jan. 4–8, 1981. Memphis, TN: National Cotton Council of America. pp. 191193.Google Scholar
Shaw, D. R. 1995. Herbicide-resistant crops and implications for herbicide-resistant weeds. Proc. South. Weed Sci. Soc. 48:38.Google Scholar
Stalker, D. M., McBride, K. E., and Malyj, L. D. 1988. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419423.Google Scholar
Turner, R. G. and Allison, D. A. 1997. Staple performance in cotton weed control programs. In Dugger, P. and Richter, D. A., eds. Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, Jan. 6–10, 1997. Memphis, TN: National Cotton Council of America. pp. 15321533.Google Scholar
Vidrine, P. R., Reynolds, D. B., and Beauboeuf, J. M. 1996. Weed control in Roundup Ready(™) cotton in Louisiana. In Dugger, P. and Richter, D. A., eds. Proceedings of the Beltwide Cotton Conferences, Nashville, TN, Jan. 9–12, 1996. Memphis, TN: National Cotton Council of America. pp. 15161517.Google Scholar
Welch, A. K., Rahn, P. R., Voth, R. D., Mills, J. A., and Shumway, C. R. 1997. Evaluation of preplant and preemergence herbicides in Roundup Ready® cotton. In Dugger, P. and Richter, D. A., eds. Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, Jan. 6–10, 1997. Memphis, TN: National Cotton Council of America. pp. 784785.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management systems for oil seed crops. In Smith, A. E., ed. Handbook of Weed Management Systems. New York: Marcel-Dekker. pp. 343400.Google Scholar
Wilcut, J. W., Coble, H. D., York, A. C., and Monks, D. W. 1996. The niche for herbicide-resistant crops in U.S. agriculture. In Duke, S. O., ed. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. Boca Raton, FL: CRC Press. pp. 213230.Google Scholar
York, A. C. 1993. Peanut response to fluometuron applied to a preceding cotton crop. Peanut Sci. 20:111114.CrossRefGoogle Scholar
York, A. C. and Culpepper, A. S. 1998. Weed management in cotton. In Edmisten, K. L., ed. 1998 Cotton Information. Raleigh, NC: North Carolina Cooperative Extension Service. pp. 74118.Google Scholar