Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T13:33:24.965Z Has data issue: false hasContentIssue false

Allelochemicals from Plants as Herbicides

Published online by Cambridge University Press:  12 June 2017

Alan R. Putnam*
Affiliation:
Dep. Hortic. Pestic. Res. Cent., Mich. State Univ., East Lansing, MI 48824

Abstract

Allelochemicals representing numerous chemical groups have been isolated from over 30 families of terrestrial and aquatic plants. Some of the compounds also have been isolated from soil in quantities sufficient to reduce plant growth. Although selected allelochemicals are believed to influence plant densities and distributions, none isolated from higher plants have been considered active enough for development as commercial herbicidal products. Almost all herbicidal allelochemicals exist in plants in nontoxic, conjugated forms. The toxic moiety may be released upon exposure to stress or upon death of the tissue. The most successful use of allelochemicals in weed control has been management of selectively toxic plant residues. For example, rye residues have controlled weeds effectively in a variety of cropping systems. Several weed species may interfere with crop growth through chemicals released from their residues. A number of noxious perennial species appear to exploit allelochemicals in their interference processes. This review focuses on the more recent chemical discoveries and how they might be exploited for weed control.

Type
Symposium
Copyright
Copyright © 1988 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abdul-Wahab, A. S., and Rice, E. L. 1967. Plant inhibition by johnsongrass and its possible significance in old-field succession. Bull. Torrey Bot. Club. 94:486497.Google Scholar
2. Avers, C. J., and Goodwin, R. H. 1956. Studies on roots. IV. Effects of coumarin and scopoletin on the standard root growth pathogen of Phleum pratense . Am. J. Bot. 43:612620.Google Scholar
3. Barnes, J. P., and Putnam, A. R. 1983. Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol. 9:10451057.Google Scholar
4. Barnes, J. P., and Putnam, A. R. 1986. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci. 34:384390.Google Scholar
5. Barnes, J. P., and Putnam, A. R. 1987. Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol. 13:889906.Google Scholar
6. Barnes, J. P., Putnam, A. R., Burke, B. A., and Aasen, A. J. 1986. Isolation and characterization of allelochemicals in rye (Secale cereale L.) shoot tissue. Phytochemistry 26:13851390.Google Scholar
7. Baskin, J. M., Ludlow, C. J., Harris, T. M., and Wolf, F. T. 1967. Psoralen, an inhibitor in the seeds of Psoralea subacaulis (Leguminosea). Phytochemistry 6:1209.Google Scholar
8. Borner, W. 1959. The apple replant problem. I. The excretion of phlorizin from apple root residues. Contrib. Boyce Thompson Inst. 20:3956.Google Scholar
9. Burger, W. P., and Small, J.G.C. 1983. Allelopathy in citrus orchards. Sci. Hortic. 20:361375.Google Scholar
10. Chang, M., and Lynn, D. G. 1987. Plant-plant recognition: Chemistry-mediating host identification in the scrophulariaceae root parasites. p. 551561 in Waller, G. R., ed. Allelochemicals: role in agriculture and forestry. Am. Chem. Soc., Washington, DC.Google Scholar
11. Chang, M., Netzly, D. H., Butler, L. G., and Lynn, D. G. 1986. Chemical regulation of distance: Characterization of the first natural host germination stimulant for Striga asiatica . J. Am. Chem. Soc. 108:78587860.Google Scholar
12. Conn, E. E. 1980. Cyanogenic compounds. Annu. Rev. Plant Physiol. 31:433.Google Scholar
13. Davis, E. F. 1928. The toxic principle of Juglans nigra as identified with synthetic juglone and its toxic effect on tomato and alfalfa plants. Am. J. Bot. 15:620.Google Scholar
14. Egley, G. H., and Dale, J. E. 1970. Ethylene, 2-chloroethyl phosphonic acid and witchweed seed germination. Proc. 23rd Annu. Meeting South. Weed Sci. Soc. 372.Google Scholar
15. Eplee, R. E. 1975. Ethylene: A witchweed seed germination stimulant. Weed Sci. 23:433436.Google Scholar
16. Fay, P. K., and Duke, W. B. 1977. An assessment of allelopathic potential in Avena germ plasm. Weed Sci. 25:224228.Google Scholar
17. Fischer, N. H. 1986. The function of mono and sesquiterpenes as plant germination and growth regulators. p. 203218 in Putnam, A. R. and Tang, C. S., ed. The Science of Allelopathy. John Wiley and Sons, New York.Google Scholar
18. Fischer, N. H., and Quijano, L. 1985. Allelopathic agents from common weeds: Amaranthus palmeri, Ambrosia artemisiifolia, and related weeds. p. 133147 in Thompson, A. C., ed. The Chemistry of Allelopathy. Chem. Soc., Washington, DC.CrossRefGoogle Scholar
19. Fuerst, E. P., and Putnam, A. R. 1983. Separating the competitive and allelopathic components of interference: theoretical principles. J. Chem. Ecol. 9:937944.Google Scholar
20. Guenzi, W. D., and McCalla, T. M. 1966. Phenolic acids in oats, wheat, sorghum and corn residues and their phytotoxicity. Agron. J. 58:303304.Google Scholar
21. Guenzi, W. D., and McCalla, T. M. 1966. Phytotoxic substances extracted from soil. Soil. Sci. Soc. Am. Proc. 30:214216.Google Scholar
22. Hansen, E. 1945. Quantitative study of ethylene production in apple varieties. Plant Physiol. 20:631652.Google Scholar
23. Hofman, J., and Hofmanova, O. 1971. 1,4-benzoxazine derivatives in plants: absence of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one from uninjured Zea mays plants. Phytochemistry 10:14411443.CrossRefGoogle Scholar
24. Ioannou, U. M., Dauterman, W. C., and Tucker, W. P. 1980. Degradation of diazinon by 2,4-dihydroxy-1-methoxy-2H-1,4-benzoxazin-3(4H)-one in maize. Phytochemistry. 9:16071609.Google Scholar
25. Kanchan, S. D., and Jayachandra, A. 1980. Allelopathic effects of Parthenium hysterophorus L. I. Exudation of inhibitors through roots. Plant Soil 53:2735.CrossRefGoogle Scholar
26. Klun, J. A., and Brindley, T. A. 1966. Role of 6-methoxybenzoxazolinone in inbred resistance of host plant (maize) to first-brood larvae of european corn borer. J. Econ. Entomol. 59:711718.Google Scholar
27. Kobayashi, A., Morimoto, S., Shibata, Y., Yamashita, K., and Numata, M. 1980. Allelopathic substances C10-polyacetylenes as in dormants in early stages of succession. J. Chem. Ecol. 6:119131.Google Scholar
28. Kobza, J., and Einhellig, F. A. 1987. The effects of ferulic acid on the mineral nitrogen of grain sorghum. Plant Soil 98:99109.Google Scholar
29. Kubo, I., and Kamikawa, T. 1983. Identification and efficient synthesis of 6-methoxy-2-benzoxazolinone (MBOA), an insect antifeedant. Experientia 39:355359.Google Scholar
30. Lehle, F. R., and Putnam, A. R. 1982. Quantification of allelopathic potential of sorghum residues by novel indexing of Richard's Function fitted to cumulative cress germination curves. Plant Physiol. 69:12121216.Google Scholar
31. Lehle, F. R., and Putnam, A. R. 1983. Allelopathic potential of sorghum (Sorghum bicolor): Isolation of seed germination inhibitors. J. Chem. Ecol. 9:12231234.Google Scholar
32. Levitt, J., and Lovett, J. V. 1984. Activity of allelochemicals of Datura stramonium L. (thorn-apple) in contrasting soil types. Plant Soil 79:181189.Google Scholar
33. Levitt, J., Lovett, J. V., and Garlick, P. R. 1984. Datura stramonium allelochemicals: Longevity in soil and ultrastructural effects on root tip cells of Helianthus annuus L. New Phytol. 97:213218.Google Scholar
34. Lodhi, M.A.K. 1976. Role of allelopathy as expressed by dominating in a low land forest in controlling productivity and pattern of herbaceous growth. Am. J. Bot. 63:18.Google Scholar
35. Lovett, J. V., and Potts, W. R. 1987. Primary effects of allelochemicals of Datura stramonium L. Plant Soil 98:137.Google Scholar
36. Lovett, J. V., Levitt, J., Duffield, A. M., and Smith, N. G. 1981. Allelopathic potential of Datura stramonium (thornapples). Weed Res. 21:165170.Google Scholar
37. Moreland, D. E., and Novitzky, W. P. 1987. Effects of phenolic acids, coumarins, and flavonoids on isolated chloroplasts and mitochondria. p. 247261 in Waller, G. R., ed. Allelochemicals: Role in Agriculture and Forestry. Am. Chem. Soc., Washington, DC.CrossRefGoogle Scholar
38. Nicollier, G. F., Pope, D. F., and Thompson, A. C. 1983. Biological activity of dhurrin and other compounds from johnsongrass (Sorghum halepense). J. Agric. Food Chem. 31:744748.Google Scholar
39. Parker, C. 1984. p. 181182 in Ayenau, E. S., Doggett, H., Keynes, R. D., Marton-Lefevre, J., Musselman, L. J., Parker, C., and Pickering, A., ed. Striga: Biology and Control. ICSU Press, Miami, FL.Google Scholar
40. Putnam, A. R., and DeFrank, J. 1983. Use of phytotoxic plant residues for selective weed control. Crop Prot. 2:173181.Google Scholar
41. Putnam, A. R., and Tang, C. S. 1986. Allelopathy: state of the science. p. 119 in Putnam, A. R. and Tang, C. S., ed. The Science of Allelopathy. John Wiley and Sons, New York.Google Scholar
42. Putnam, A. R., and Weston, L. A. 1986. Adverse impacts of allelopathy in agricultural systems, p. 4356 in Putnam, A. R. and Tang, C. S., The Science of Allelopathy. Jonn Wiley and Sons, New York.Google Scholar
44. Rice, E. L. 1984. Allelopathy. Academic Press, Orlando, FL. p. 266291.Google Scholar
45. Rizvi, S.J.H., Mukerjee, D., and Mather, S. N. 1981. Selective phytotoxicity of 1,3,7-trimethylxanthine between Phaseolus mungo and some weeds. Agric. Biol. Chem. 45:12551256.Google Scholar
46. Rizvi, S.J.H., Rizvi, V., Mukerjee, D., and Mather, S. N. 1987. 1,3,7-trimethylxanthine, an allelochemical from seeds of Coffea arabica: Some aspects of its mode of action as a natural herbicide. Plant Soil 98:8192.Google Scholar
47. Schreiner, O., and Reed, H. S. 1908. The toxic action of certain organic plant constituents. Bot. Gaz. 45:73102.Google Scholar
48. Stevens, K. L. 1986. Polyacetylenes as allelochemicals. p. 219228 in Putnam, A. R. and Tang, C. S., ed. The Science of Allelopathy. John Wiley and Sons, New York.Google Scholar
49. Sullivan, S. L., Gracen, V. E., and Ortega, A. 1974. Resistance of exotic maize varieties to the European corn borer Ostrinia nubilalis (Hubner). Environ. Entomol. 3:718720.Google Scholar
50. Suzuki, T., and Waller, G. R. 1987. Allelopathy due to purine alkaloids in tea seeds during germination. Plant Soil 98:131136.Google Scholar
51. Tang, C. S., and Zhang, B. 1986. Qualitative and quantitative determination of the allelochemical sphere of germinating mung bean. p. 229242 in Putnam, A. R. and Tang, C. S., ed. The Science of Allelopathy. John Wiley and Sons, New York.Google Scholar
52. Tang, C. S., Wat, C. K., and Towers, G.H.N. 1987. Thiophenes and benzofurans in the undisturbed rhizosphere of Tagetes patula L. Plant Soil 98:9397.Google Scholar
53. Thompson, A. C. 1985. Biochemical interactions among plants. in Thompson, A. C., ed. The Chemistry of Allelopathy. Am. Chem. Soc. Symp. Ser. 268, Washington, DC.Google Scholar
54. Towers, G. H. N., and Wat, C. K. 1978. Precursors of benzoxazolinone in rye plants. I. Rev. Latinoam. Quim. 9:162.Google Scholar
55. Virtanen, A. I., and Hietala, P. K. 1960. Precursor II. The aglucone. Acta Chem. Scand. 14:499.Google Scholar
56. Waller, G. R. 1987. Allelochemicals: Role in Agriculture and Forestry. Am. Chem. Soc., Washington, DC. No. 330.Google Scholar
57. Waller, G. R., Kumari, D., Freedman, J., Freedman, N., and Chou, C. H. 1986. Caffeine autotoxicity in Coffea arabica L. p. 243269 in Putnam, A. R. and Tang, C. S., ed. The Science of Allelopathy. John Wiley and Sons, New York.Google Scholar
58. Weston, L. A., and Putnam, A. R. 1986. Inhibition of seedling growth by quackgrass (Agropyron repens) residues and extracts. Weed Sci. 34:366372.Google Scholar
59. Weston, L. A., and Putnam, A. R. 1985. Inhibition of growth, nodulation, and nitrogen fixation of legumes by quackgrass (Agropyron repens). Crop Sci. 25:561565.Google Scholar
60. Weston, L. A., Burke, B. A., and Putnam, A. R. 1987. Isolation, characterization, and activity of phytotoxic compounds from quackgrass (Agropyron repens (L.)Beauv.). J. Chem. Ecol. 13:403421.Google Scholar
61. Whitehead, D. C. 1964. Identification of p-hydroxybenzoic vanillic, p-coumaric, and ferulic acids from soils. Nature 202:417418.Google Scholar
62. Whitenack, C. J., Nair, M. G., and Putnam, A. R. 1988. 2,2′-oxo-1,1′azobenzene: A potential allelopathic compound from breakdown of rye (Secale cereale) residues. Abstr. Weed Sci. Soc. Am. 28:144.Google Scholar
63. Winter, A. G. 1961. New physiological and biological aspects in the interrelationship between higher plants. Symp. Soc. Exp. Biol. 15:229244.Google Scholar
64. Wolf, R. B., Spencer, G. F., and Plattner, R. D. 1985. Benzoxazolinone, 2,4-dihydroxy-1,4-benzoxazin-3-one and its glucoside from Acanthus mollis seeds inhibit velvedeaf germination and growth. J. Nat. Prod. 48:59.CrossRefGoogle Scholar
65. Woodward, M. D., Corcuera, L. J., Schnoes, H. K., Helgeson, J. P., and Upper, C. O. 1979. Identification of 1,4-benzoxazin-3-ones in maize extracts by GLC and MS. Plant Physiol. 63:913.Google Scholar
66. Young, C. C. 1986. Autointoxication of Asparagus officinalis L. p. 101110 in Putnam, A. R. and Tang, C. S., ed. The Science of Allelopathy. John Wiley and Sons, New York.Google Scholar