Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T21:20:56.916Z Has data issue: false hasContentIssue false

Entire functions with two radially distributed values

Published online by Cambridge University Press:  04 April 2017

WALTER BERGWEILER
Affiliation:
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig–Meyn–Str. 4, 24098 Kiel, Germany. e-mail: bergweiler@math.uni-kiel.de
ALEXANDRE EREMENKO
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A. e-mail: eremenko@math.purdue.edu
AIMO HINKKANEN
Affiliation:
Department of Mathematics, University of Illinois at Urbana–Champaign, 1409 W. Green St., Urbana, IL 61801, U.S.A. e-mail: aimo@math.uiuc.edu

Abstract

We study entire functions whose zeros and one-points lie on distinct finite systems of rays. General restrictions on these rays are obtained. Non-trivial examples of entire functions with zeros and one-points on different rays are constructed, using the Stokes phenomenon for second order linear differential equations.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Azarin, V. S. Asymptotic behavior of subharmonic functions of finite order (Russian). Mat. Sb. (N.S.) 108 (150) (1979), no. 2, 147167, 303. (English transl.: Math. USSR, Sb. 36 (1980), 135–154.)Google Scholar
[2] Baker, I. N. Entire functions with linearly distributed values. Math. Z. 86 (1964), 263267.Google Scholar
[3] Baker, I. N. Entire functions with two linearly distributed values. Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 2, 381386.Google Scholar
[4] Bender, C. M., Boettcher, S. and Meisinger, P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40 (1999), no. 5, 22012229.Google Scholar
[5] Bergweiler, W. and Eremenko, A. Goldberg's constants. J. Anal. Math. 119 (2013), no. 1, 365402.Google Scholar
[6] Blondel, V. Simultaneous Stabilization of Linear Systems (Springer, Berlin, 1994).CrossRefGoogle Scholar
[7] Bieberbach, L. Über eine Vertiefung des Picardschen Satzes bei ganzen Funktionen endlicher Ordnung. Math. Z. 3 (1919), 175190.Google Scholar
[8] Biernacki, M. Sur le déplacement des zéros des fonctions entières par leur dérivation. Comptes Rendus 175 (1922), 1820.Google Scholar
[9] Biernacki, M. Sur la théorie des fonctions entières. Bulletin de l'Académie polonaise des sciences et des lettres, Classe des sciences mathématiques et naturelles, Série A (1929), 529–590.Google Scholar
[10] Boas, H. P. and Boas, R. P. Short proofs of three theorems on harmonic functions. Proc. Amer. Math. Soc. 102 (1988), no. 4, 906908.Google Scholar
[11] Dorey, P., Dunning, C. and Tateo, R. On the relation between Stokes multipliers and the T-Q systems of conformal field theory. Nuclear Physics B 563 (1999), 573602.Google Scholar
[12] Dorey, P., Dunning, C. and Tateo, R. The ODE/IM correspondence. J. Phys. A 40 (2007), no. 32, R205R283.Google Scholar
[13] Drasin, D. Value distributions of entire functions in regions of small growth. Ark. Mat. 12 (1974), 281296.Google Scholar
[14] Drasin, D. and Shea, D. F. Pólya peaks and the oscillation of positive functions. Proc. Amer. Math. Soc. 34 (1972), 403411.Google Scholar
[15] Edrei, A. Meromorphic functions with three radially distributed values. Trans. Amer. Math. Soc. 78 (1955), 276293.Google Scholar
[16] Eremenko, A. Value distribution and potential theory. Proceedings of the ICM, Vol. II (Beijing, 2002) (Higher Ed. Press, Beijing, 2002), pp. 681690.Google Scholar
[17] Eremenko, A. Simultaneous stabilisation, avoidance and Goldberg's constants. arXiv: 1208.0778.Google Scholar
[18] Eremenko, A. Entire functions, PT-symmetry and Voros's quantization scheme. arXiv: 1510.02504.Google Scholar
[19] Goldberg, A. A. and Ostrovskii, I. V. Distribution of values of meromorphic functions (Amer. Math. Soc., Providence, RI, 2008).Google Scholar
[20] Hörmander, L. The Analysis of Linear Partial Differential Operators I. 2nd ed. (Springer, Berlin, 1990.Google Scholar
[21] Hörmander, L. Notions of Convexity (Birkhäuser, Boston, 1994).Google Scholar
[22] Kobayashi, T. An entire function with linearly distributed values. Kodai Math. J. 2 (1979), no. 1, 5481.Google Scholar
[23] Lehto, O. and Virtanen, K. I. Quasiconformal Mappings in the Plane (Springer, New York – Heidelberg, 1973).Google Scholar
[24] Levin, B. Ya. Distribution of zeros of entire functions. Amer. Math. Soc. (Providence, RI, 1970).Google Scholar
[25] Milloux, H. Sur la distribution des valeurs des fonctions entières d'ordre fini, à zéros reels. Bull. Sci. Math. (2) 51 (1927), 303319.Google Scholar
[26] Nevanlinna, R. Über die Konstruktion von meromorphen Funktionen mit gegebenen Wertzuordnungen. Festschrift zur Gedächtnisfeier für Karl Weierstraß (Westdeutscher Verlag, Köln – Opladen, 1966), pp. 579582.Google Scholar
[27] Ozawa, M. On the zero-one set of an entire function. Kodai Math. Sem. Rep. 8 (1977), no. 4, 311316.Google Scholar
[28] Pólya, G. and Szegő, G. Problems and Theorems in Analysis. Vol. I: Series, Integral Calculus, Theory of Functions (Springer, New York, 1972).CrossRefGoogle Scholar
[29] Ransford, T. Potential Theory in the Complex Plane (Cambridge University Press, Cambridge, 1995).Google Scholar
[30] Rubel, L. A. and Yang, C.-C. Interpolation and unavoidable families of meromorphic functions. Michigan Math. J. 20 (1974), no. 4, 289296.Google Scholar
[31] Shin, K. The potential (iz)m generates real eigenvalues only, under symmetric rapid decay boundary conditions. J. Math. Phys. 46 (2005), no. 8, 082110, 17pp.Google Scholar
[32] Sibuya, Y. Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient (North–Holland, Amsterdam, 1975).Google Scholar
[33] Sibuya, Y. Non-trivial entire solutions of the functional equation f(λ) + f(ωλ)f−1λ) = 1. Analysis 8 (1998), 271295.Google Scholar
[34] Sibuya, Y. and Cameron, R. An entire solution of the functional equation f(λ) + f(ωλ)f−1λ) = 1. Lecture Notes Math. 312 (Springer, Berlin, 1973), pp. 194202.Google Scholar
[35] Tabara, T. Asymptotic behavior of Stokes multipliers for y″ - (x σ + λ)y = 0, (σ ⩾ 2) as λ → ∞. Dynam. Contin. Discrete Impuls. Systems 5 (1999), 93105.Google Scholar
[36] Winkler, J. Zur Existenz ganzer Funktionen bei vorgegebener Menge der Nullstellen und Einsstellen. Math. Z. 168 (1979), 7786.Google Scholar