Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:41:51.428Z Has data issue: false hasContentIssue false

Differences in activity patterns of the Neotropical otter Lontra longicaudis between rivers of two Brazilian ecoregions

Published online by Cambridge University Press:  15 March 2016

Marcelo Lopes Rheingantz*
Affiliation:
Laboratório de Ecologia e Conservação de Populações, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Avenida Brigadeiro Trompowski, S/N, CCS, Bloco A, Sala A2-102, Ilha do Fundão, Rio de Janeiro, RJ, Brasil, CEP 21941-590 - Caixa Postal 68020 Programa de Pós-Graduação em Ecologia (PPGE/ UFRJ), Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, Departamento de Ecologia, Av. Brigadeiro Trompowski, s/n. CCS, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, Brasil. CEP 21941-590 - Caixa Postal 68020
Caroline Leuchtenberger
Affiliation:
Laboratório de Vida Selvagem, Embrapa Pantanal, 21 de Setembro, 1880, Corumbá, MS, Brasil. CEP 79320–900
Carlos André Zucco
Affiliation:
Laboratório de Ecologia e Conservação de Populações, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Avenida Brigadeiro Trompowski, S/N, CCS, Bloco A, Sala A2-102, Ilha do Fundão, Rio de Janeiro, RJ, Brasil, CEP 21941-590 - Caixa Postal 68020 Programa de Pós-Graduação em Ecologia (PPGE/ UFRJ), Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, Departamento de Ecologia, Av. Brigadeiro Trompowski, s/n. CCS, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, Brasil. CEP 21941-590 - Caixa Postal 68020
Fernando A.S. Fernandez
Affiliation:
Laboratório de Ecologia e Conservação de Populações, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Avenida Brigadeiro Trompowski, S/N, CCS, Bloco A, Sala A2-102, Ilha do Fundão, Rio de Janeiro, RJ, Brasil, CEP 21941-590 - Caixa Postal 68020 Programa de Pós-Graduação em Ecologia (PPGE/ UFRJ), Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biologia, Departamento de Ecologia, Av. Brigadeiro Trompowski, s/n. CCS, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ, Brasil. CEP 21941-590 - Caixa Postal 68020
*
1Corresponding author: Marcelo Lopes Rheingantz. Email: mlrheingantz@gmail.com

Abstract:

Circadian use of time is an important, but often neglected, part of an animal's niche. We compared the activity patterns of the Neotropical otter Lontra longicaudis in two different areas in Brazil using camera traps placed at the entrance of holts. We obtained 58 independent photos in the Atlantic Forest (273 camera trap-days) and 46 photos in Pantanal (300 camera trap-days). We observed different kernel density probabilities on these two areas (45.6% and 14.1% overlap between the 95% and 50% density isopleths respectively). We observed the plasticity in Neotropical otter activity behaviour with different activity patterns in the two areas. In the Pantanal, the Neotropical otter selected daylight (Ivlev = 0.23) and avoided night (Ivlev = −0.44), while in the Atlantic Forest it selected dawn (Ivlev = 0.24) and night (Ivlev = 0.14), avoiding daylight (Ivlev = −0.33). We believe that this pattern can be due to human activity or shifts in prey activity.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BRITSKI, H. A., SILIMON, S. K. & BALZAC, S. L. 1999. Peixes do Pantanal, Manual de Identificação. Embrapa, Corumbá. 184 pp.Google Scholar
DI BITETTI, M. S., DE ANGELO, C. D., DI BLANCO, Y. E. & PAVIOLO, A. 2010. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36:403412.Google Scholar
GALLIEZ, M., LEITE, M. S., QUEIROZ, T. L. & FERNANDEZ, F. A. S. 2009. Ecology of the water opossum Chironectes minimus in Atlantic forest streams of southeastern Brazil. Journal of Mammalogy 90:93103.Google Scholar
GERBER, B. D., KARPANTY, S. M. & RANDRIANANTENAINA, J. 2012. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. Journal of Mammalogy 93:667676.Google Scholar
GÓMEZ, H., WALLACE, R. B., AYALA, G. & TEJADA, R. 2005. Dry season activity periods of some Amazonian mammals. Studies on Neotropical Fauna and Environment 40:9195.Google Scholar
IVLEV, V. S. 1961. Experimental ecology of the feeding of fishes. Yale University Press, New Haven. 302 pp.Google Scholar
JUNK, W. J. & CUNHA, C. N. 2005. Pantanal: a large South American wetland at a crossroads. Ecological Engineering 24:391401.Google Scholar
KRUUK, H. 2006. Otters: ecology, behavior and conservation. Oxford University Press, New York. 265 pp.Google Scholar
LERONE, L., CARPANETO, G. M. & LOY, A. 2015. Why camera traps fail to detect a semi‐aquatic mammal: activation devices as possible cause. Wildlife Society Bulletin 39:193196.Google Scholar
LEUCHTENBERGER, C., ZUCCO, C. A., RIBAS, C., MAGNUSSON, W. & MOURÃO, G. 2014. Activity patterns of giant otters recorded by telemetry and camera traps. Ethology, Ecology and Evolution 26:1928.Google Scholar
LODÉ, T. 1995. Activity pattern of polecats Mustela putorius L. in relation to food habits and prey activity. Ethology 100:295308.CrossRefGoogle Scholar
MCCLENNEN, N., WIGGLESWORTH, R. R. & ANDERSON, S. H. 2001. The effect of suburban and agricultural development on the activity patterns of coyotes (Canis latrans). American Midland Naturalist 146:2736.Google Scholar
METZGER, J. P. 2009. Conservation issues in the Brazilian Atlantic forest. Biological Conservation 142:11381140.Google Scholar
OLIVEIRA-SANTOS, L. G. R., ZUCCO, C. A. & AGOSTINELLI, C. 2013. Using conditional circular kernel density functions to test hypotheses on animal circadian activity. Animal Behaviour 85:269280.Google Scholar
O'CONNELL, A. F., NICHOLS, J. D. & KARANTH, K. U. 2010. Camera traps in animal ecology: methods and analyses. Springer, Beltsville. 271 pp.Google Scholar
PICKLES, R., ZAMBRANA, V., JORDAN, B., HOFFMANN, I., SALINAS, A., GROOMBRIDGE, J. & VAN DAMME, P. 2011. An evaluation of the utility of camera-traps in monitoring giant otter populations. IUCN Otter Specialist Group Bulettin 28:3945.Google Scholar
RHEINGANTZ, M. L., OLIVEIRA-SANTOS, L. G., WALDEMARIN, H. F. & CARAMASCHI, E. P. 2012. Are otters generalists or do they prefer larger, slower prey? Feeding flexibility of the neotropical otter Lontra longicaudis in the Atlantic Forest. IUCN Otter Specialist Group Bulletin 29:8094.Google Scholar
RILEY, S. P., SAUVAJOT, R. M., FULLER, T. K., YORK, E. C., KAMRADT, D. A., BROMLEY, C. & WAYNE, R. K. 2008. Effects of urbanization and habitat fragmentation on bobcats and coyotes in Southern California. Conservation Biology 17:566576.Google Scholar
ROWCLIFFE, J. M., FIELD, J., TURVEY, S. T. & CARBONE, C. 2008. Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology 45:12281236.Google Scholar
ROWCLIFFE, J. M., KAYS, R., KRANSTAUBER, B., CARBONE, C. & JANSEN, P. A. 2014. Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution 5:11701179.Google Scholar
SCHOENER, T. W. 1974. Resource partitioning in ecological communities. Science 185:2739.Google Scholar
SILVA, R. E., ROSAS, F. W. & ZUANON, J. 2014. Feeding ecology of the giant otter (Pteronura brasiliensis) and the Neotropical otter (Lontra longicaudis) in Jaú National Park, Amazon, Brazil. Journal of Natural History 48:465479.Google Scholar
ZHOU, Q., WEI, F., HUANG, C., LI, M., REN, B. & LUO, B. 2007. Seasonal variation in the activity patterns and time budgets of Trachypithecus francoisi in the Nonggang Nature Reserve, China. International Journal of Primatology 28:657671.Google Scholar