Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T19:50:16.961Z Has data issue: false hasContentIssue false

Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation

Published online by Cambridge University Press:  08 April 2016

Richard Lupia
Affiliation:
Department of Geology, The Field Museum, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605. E-mail: rlupia@fmnh.org
Scott Lidgard
Affiliation:
Department of Geology, The Field Museum, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605. E-mail: rlupia@fmnh.org
Peter R. Crane
Affiliation:
Department of Geology, The Field Museum, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605. E-mail: rlupia@fmnh.org

Abstract

The Cretaceous radiation of angiosperms initiated a major reorganization of terrestrial plant communities as dominance by pteridophytic and gymnospermic groups eventually gave way to dominance by angiosperms. Previously, patterns of biotic replacement have been assessed using measures based on taxonomic diversity data. However, using measures of both abundance and diversity to investigate replacement patterns provides more information about macroecological change in the fossil record than either can provide alone. Analyses of an updated and expanded database of North American palynological samples from Cretaceous sediments document a rapid increase in angiosperm diversity and abundance within individual fossil palynofloras (representing local/subregional vegetation). New analyses of floristic diversity patterns support previous results and indicate that the decline of free-sporing plants is more pronounced than the decline of gymnosperms. In contrast, analyses of abundance data appear to show that the decline of gymnosperms is far more pronounced than the decline of free-sporing plants. Detailed examination of both data sets segregated by paleolatitude shows that this apparent contradiction reflects biogeographical differences in the patterns of vegetational change (e.g., free-sporing plants declined in abundance at lower latitudes) as well as sampling bias (e.g., greater sampling in the northern region in the Late Cretaceous). Analyses accounting for these biases support the conclusion that as angiosperms radiated, free-sporing plants rather than gymnosperms (in this case, mainly conifers) experienced the most pronounced decline. A thorough understanding of the Cretaceous radiation of angiosperms will require both abundance and diversity data. It also will require expanding the analyses presented here into other geographic regions as well as sampling more completely at all spatial scales.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Albert, V. A., Backlund, A., Bremer, K., Chase, M. W., Manhart, J. R., Mishler, B. D., and Nixon, K. C. 1994. Functional constraints and rbcL evidence for land plant phylogeny. Annals of the Missouri Botanical Garden 81:534567.Google Scholar
am Ende, B. A. 1987. Depositional environments and paleontology of the Upper Cretaceous Dakota Formation, Kane County, Utah. . Northern Arizona University, Flagstaff.Google Scholar
Andersen, S. T. 1967. Tree-pollen rain in a mixed deciduous forest in South Jutland. Review of Palaeobotany and Palynology 3:267275.Google Scholar
Andersen, S. T. 1974. Wind conditions and pollen deposition in a mixed deciduous forest. I. wind conditions and pollen dispersal. Grana 14:5763.Google Scholar
Anderson, R. Y. 1960. Cretaceous-Tertiary palynology, eastern side of the San Juan Basin, New Mexico. New Mexico Bureau of Mining and Mineral Resources Memoir 6:159.Google Scholar
Axelrod, D. I. 1952. A theory of angiosperm evolution. Evolution 6:2960.Google Scholar
Axelrod, D. I. 1959. Poleward migration of early angiosperm flora. Science 130:203207.Google Scholar
Balme, B. E. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology 87:81323.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Batten, D. J. 1968. Probable dispersed spores of Cretaceous Equisetites. Palaeontology 11:633642.Google Scholar
Beck, C. B., ed. 1976. Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
Benton, M. J. 1987. Progress and competition in macroevolution. Biological Reviews 62:305338.Google Scholar
Benton, M. J. 1991. Extinction, biotic replacements, and clade interactions. Pp. 89102in Dudley, E. C., ed. The unity of evolutionary biology, Vol. 1. Dioscorides, Portland, Ore.Google Scholar
Benton, M. J. 1996. On the nonprevalence of competitive replacement in the evolution of tetrapods. Pp. 185210in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Berglund, B. E., Birks, H. J. B., Ralska-Jasiewiczowa, M., and Wright, H. E., eds. 1996. Palaeoecological events during the last 15,000 years, regional syntheses of palaeoecological studies of lakes and mires in Europe. Wiley, New York.Google Scholar
Bond, W. J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36:227249.Google Scholar
Bradshaw, R. H. W., and Webb, T. III. 1985. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66:721737.Google Scholar
Brenner, G. J. 1963. The spores and pollen of the Potomac Group of Maryland. Department of Geology, Mines and Water Resources, State of Maryland, Bulletin 27:1215.Google Scholar
Brenner, G. J. 1968. Table 6. Palynological analyses of selected samples taken from wells contained in the correlation cross-section network of southern Maryland. Maryland Geological Survey Report of Investigations 7:2931.Google Scholar
Brenner, G. J. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. Pp. 2347in Beck, 1976.Google Scholar
Brenner, G. J. 1996. Evidence for the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel. Pp. 91115in Taylor, D. W. and Hickey, L. J., eds. Flowering plant origin, evolution and phylogeny. Chapman and Hall, New York.Google Scholar
Brideaux, W. W., and McIntyre, D. J. 1975. Miospores and microplankton from Aptian-Albian rocks along Horton River, District of Mackenzie. Geological Survey of Canada Bulletin 252:185.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Burden, E. T., and Langille, A. B. 1991. Palynology of Cretaceous and Tertiary strata, Northeast Baffin Island, Northwest Territories, Canada: implications for the history of rifting in Baffin Bay. Palynology 15:91114.Google Scholar
Buzas, M. A. 1990. Another look at confidence limits for species proportions. Journal of Paleontology 64:842843.Google Scholar
Caldwell, W. G. E., and Kauffman, E. G. 1993. Evolution of the Western Interior Basin. Geological Association of Canada Special Publication 39. University of Newfoundland, St. John's.Google Scholar
Carlson, S. J. 1992. Evolutionary trends in the articulate brachiopod hinge mechanism. Paleobiology 18:344366.CrossRefGoogle Scholar
Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-L., et al. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80:528580.Google Scholar
Christopher, R. A. 1979. Normapolles and triporate pollen assemblages from the Raritan and Magothy Formations (Upper Cretaceous) of New Jersey. Palynology 3:73121.Google Scholar
Clarke, R. T. 1963. Palynology of Vermejo Formation coals (Upper Cretaceous) in the Canon City Coal Field, Fremont County, Colorado. Ph. D. dissertation. University of Oklahoma, Norman.Google Scholar
Cochrane, D., and Orcutt, G. H. 1949. Application of least-squares regressions to relationships containing auto-correlated error terms. Journal of the American Statistical Association 44:3261.Google Scholar
Connor, E. F. 1986. Time series analysis of the fossil record. Pp. 119148in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.Google Scholar
Connors, S. D. 1980. A palynological study of some Georgia Coastal Plain sediments. Georgia Geologic Survey Open File Report 81–1:140.Google Scholar
Cousminer, H. L. 1961. Palynology, paleofloras and paleoenvironments. Micropaleontology 7:365368.CrossRefGoogle Scholar
Crabtree, D.R. 1987. Angiosperms of the nothern Rocky Mountains: Albian to Campanian (Cretaceous) megafossil floras. Annals of the Missouri Botanical Garden 74:707747.Google Scholar
Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden 72:716793.Google Scholar
Crane, P. R. 1987. Vegetational consequences of the angiosperm diversification. Pp. 107144in Friis, E. M., Chaloner, W. G., and Crane, P. R., eds. The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge.Google Scholar
Crane, P. R. 1989. Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Plant Systematics and Evolution 162:165191.Google Scholar
Crane, P. R., and Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246:675678.Google Scholar
Crane, P. R., and Lidgard, S. 1990. Angiosperm radiation and patterns of Cretaceous palynological diversity. In Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Systematics Association Special Volume 42:377407. Clarendon, Oxford.Google Scholar
Crane, P. R., and Upchurch, G. R. 1987. Drewria potomacensis gen. et sp. nov., an early Cretaceous member of the Gnetales from the Potomac Group of Virginia. American Journal of Botany 74:17221736.CrossRefGoogle Scholar
Crane, P. R., Friis, E. M., and Pedersen, K. R. 1995. The origin and early diversification of angiosperms. Nature 374:2733.Google Scholar
Cushing, E. J., and Wright, H. E. Jr., eds. 1967. Quaternary paleoecology. Yale University Press, New Haven, Conn.Google Scholar
Davis, M. B., and Goodlett, J. C. 1960. Comparison of present vegetation with pollen-spectra in surface samples from Brownington Pond, Vermont. Ecology 41:346357.CrossRefGoogle Scholar
Delcourt, P. A., and Delcourt, H. R. 1987. Long-term forest dynamics of the temperate zone, a case study of Late Quaternary forests in eastern North America. Ecological Studies 63. Springer, Berlin.Google Scholar
DiMichele, W. A., Phillips, T. L., and Peppers, R. A. 1985. The influence of climate and depositional environment on the distribution and evolution of Pennsylvanian coal-swamp plants. Pp. 223256in Tiffney, B., ed. Geological factors and the evolution of plants. Yale University Press, New Haven, Conn.Google Scholar
Dorf, E. 1955. Plants and the geologic time scale. In Poldervaart, A., ed. Crust of the earth. Geological Society of America Special Paper 62:575592.Google Scholar
Doyle, J. A. 1968. Appendix B: Floral list showing distribution of sporomorphs in 13 samples of Potomac Group sediments (in percents). In Cleaves, E. T.Piedmont and Coastal Plain geology along the Susquehanna aqueduct, Baltimore to Aberdeen, Maryland. Maryland Geological Survey Report of Investigations 8:43. Baltimore.Google Scholar
Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. Journal of the Arnold Arboretum 50:135.Google Scholar
Doyle, J. A. 1977. Patterns of evolution in early angiosperms. Pp. 501546in Hallam, A., ed. Patterns of evolution as illustrated by the fossil record. Elsevier, New York.Google Scholar
Doyle, J. A. 1978. Origin of angiosperms. Annual Review of Ecology and Systematics 9:365392.Google Scholar
Doyle, J. A. 1979. Palynostratigraphic zonation. In Maryland Geological Survey Report of Investigations 30:3442.Google Scholar
Doyle, J. A. 1982. Palynology of the continental Cretaceous sediments, Crisfield Geothermal Test Well, eastern Maryland. Pp. 5187in Maryland Geological Survey Open File Report, Part 2.Google Scholar
Doyle, J. A. 1983. Palynological evidence for Berrasian age of basal Potomac Group sediments, Crisfield Well, eastern Maryland. Pollen et Spores 25:499530.Google Scholar
Doyle, J. A. 1996. Seed plant phylogeny and the relationships of Gnetales. International Journal of Plant Sciences 157(6) (Suppl.):339.Google Scholar
Doyle, J. A., and Donoghue, M. J. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review 52:321431.Google Scholar
Doyle, J. A., and Donoghue, M. J. 1993. Phylogenies and angiosperm diversification. Paleobiology 141167.Google Scholar
Doyle, J. A., and Hickey, L. J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. Pp. 139206in Beck, 1976.Google Scholar
Doyle, J. A., and Hotton, C. L. 1991. Diversification of early angiosperm pollen in a cladistic context. In Blackmore, S. and Barnes, S. H., eds. Pollen and spores, patterns of diversification. Systematics Association Special Volume 44:169195. Clarendon, Oxford.Google Scholar
Doyle, J. A., Jardiné, S., and Doerenkamp, A. 1982. Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of northern Gondwana. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 6:39117.Google Scholar
Doyle, J. A., Donoghue, M. J., and Zimmer, E. A. 1994. Integration of morphology and ribosomal RNA data on the origin of angiosperms. Annals of the Missouri Botanical Garden 81:419450.Google Scholar
Erdtman, G. 1943. An introduction to pollen analysis. Chronica Botanica Co., Waltham, Mass.Google Scholar
Faegri, K., Kaland, P. E., and Krzywinski, K. 1989. Textbook of pollen analysis. Wiley, New York.Google Scholar
Farabee, M. J., and Canright, J. E. 1986. Stratigraphic palynology of the lower part of the Lance Formation (Maestrichtian) of Wyoming. Palaeontographica, Abteilung B 199:189.Google Scholar
Farabee, M. J., Daghlian, C. P., Canright, J. E., and Oftedahl, O. 1984. Libopollis, a new pollen genus from the Upper Cretaceous (Maestrichtian) of North America. Palynology 8:145163.Google Scholar
Farley, M. B., and Dilcher, D. L. 1986. Correlation between miospores and depositional environments of the Dakota Formation (mid-Cretaceous) of north-central Kansas and adjacent Nebraska. Palynology 10:117133.CrossRefGoogle Scholar
Felix, C. J., and Burbridge, P. P. 1973. A Maestrichtian age microflora from Arctic Canada. Geoscience and Man 7:129.Google Scholar
Fisher, D. C. 1991. Phylogenetic analysis and its application in evolutionary paleobiology. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:103122. Paleontological Society, Knoxville, Tenn.Google Scholar
Frederiksen, N. O., Ager, T. A., and Edwards, L. E. 1988. Palynology of Maastrichtian and Paleocene rocks, lower Colville River region, North Slope of Alaska. Canadian Journal of Earth Sciences 25:512527.Google Scholar
Gothan, W., and Remy, W. 1957. Steinkohlenpflanzen. Glückauf, Essen.Google Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology 6:383396.Google Scholar
Gray, T. C., and Groot, J. J. 1966. Pollen and spores from the marine Upper Cretaceous formations of Delaware and New Jersey. Palaeontographica, Abteilung B. 117:114134.Google Scholar
Greig-Smith, P. 1967. Quantitative plant ecology. Plenum, New York.Google Scholar
Groot, J. J., and Penny, J. S. 1960. Plant microfossils and age of nonmarine Cretaceous sediments of Maryland and Delaware. Micropaleontology 6:225236.CrossRefGoogle Scholar
Groot, J. J., Penny, J. S., Groot, C. R. 1961. Plant microfossils and age of the Raritan, Tuscaloosa and Magothy Formations of the eastern United States. Palaeontographica, Abteilung B 108:121140.Google Scholar
Hayek, L. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Herngreen, G. F. W., Kedves, M., Ronina, L. V., and Smirnova, S. B. 1996. Cretaceous palynofloral provinces: a review. Pp. 11571188in Jansonius, J. and McGregor, D. C., eds. Palynology: principles and applications, Vol. 3. American Association of Stratigraphic Palynologists Foundation, Salt Lake City.Google Scholar
Heslop-Harrison, J., Heslop-Harrison, Y., Knox, R. B., and Howlett, B. 1973. Pollen-wall proteins: “gametophytic” and “sporophytic” fractions in the pollen walls of Malvaceae. Annals of Botany 37:403412.Google Scholar
Hickey, L. J., and Doyle, J. A. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Botanical Review 43:3104.CrossRefGoogle Scholar
Hopkins, W. S. Jr. 1971. Palynology of the lower Cretaceous Isachsen Fomation on Melville Island, District of Franklin. Geological Survey of Canada Bulletin 197:109133.Google Scholar
Hopkins, W. S. Jr., and Sweet, A. R. 1976. Miospores and megaspores from the lower Cretaceous Mattagami Formation of Ontario. Geological Survey of Canada Bulletin 256:5571.Google Scholar
Hower, J. C., Rich, F. J., Williams, D. A., Bland, A. E., and Fiene, F. L. 1990. Cretaceous and Eocene lignite deposits, Jackson Purchase, Kentucky. International Journal of Coal Geology 16:239254.CrossRefGoogle Scholar
Hughes, N. F. 1976. Paleobiology of angiosperm origins. Cambridge University Press, Cambridge.Google Scholar
Hughes, N. F. 1994. The enigma of angiosperm origins. Cambridge University Press, Cambridge.Google Scholar
Hughes, N. F., and McDougall, A. B. 1987. Records of angiospermid pollen entry into the English Early Cretaceous succession. Review of Palaeobotany and Palynology 50:255272.Google Scholar
Huntley, B., and Webb, T. III. 1988. Vegetation history. Kluwer Academic Publishers, Boston.Google Scholar
Jablonski, D. 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science 279:13271330.CrossRefGoogle ScholarPubMed
Jackson, D. A. 1997. Compositional data in community ecology: the paradigm or peril of proportions? Ecology 78:929940.Google Scholar
Jackson, J. B. C. 1988. Does ecology matter? Paleobiology 14:307312.Google Scholar
Jackson, S. T. 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empircal evidence. Pp. 253286in Traverse, A., ed. Sedimentation of organic particles. Cambridge University Press, Cambridge.Google Scholar
Jackson, S. T., and Wong, A. 1994. Using forest patchiness to determine pollen source areas of closed-canopy pollen assemblages. Journal of Ecology 82:8999.Google Scholar
Jarzen, D. M. 1982. Palynology of Dinosaur Provincial Park (Campanian) Alberta. Syllogeus 38:169.Google Scholar
Jarzen, D. M., and Nichols, D. J. 1996. Pollen. Pp. 261291in Jansonius, J. and McGregor, D. C., eds. Palynology: principles and applications, Vol. 1. American Association of Stratigraphic Palynologists Foundation, Salt Lake City.Google Scholar
Kidwell, S. M., and Flessa, K. W. 1995. The quality of the fossil record: populations, species and communities. Annual Review of Ecology and Systematics 26:269299.Google Scholar
Kimyai, A. 1970. Plant microfossils from the Raritan Formation (Cretaceous) in Long Island. Pollen et Spores 12:181204.Google Scholar
King, L. H., MacLean, B., Bartlett, G. A., Jeletsky, J. A., and Hopkins, W. S. Jr. 1970. Cretaceous strata on the Scotian Shelf. Canadian Journal of Earth Sciences 7:145155.Google Scholar
Kitchell, J. A. 1985. Evolutionary paleoecology: recent contributions to evolutionary theory. Paleobiology 11:91104.Google Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. Pp. 2168in Nitecki, M. H., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Knoll, A. H. 1986. Patterns of change in plant communities through geological time. Pp. 126141in Diamond, J. and Case, T. J., eds. Community ecology. Harper and Row, New York.Google Scholar
Koch, C. F. 1978. Bias in the published fossil record. Paleobiology 4:367372.Google Scholar
Krause, D. W. 1986. Competitive exclusion and taxonomic displacement in the fossil record: the case of rodents and multituberculates in North America. In Flanagan, K. M. and Lillegraven, J. A., eds. Vertebrates, phylogeny and philosophy. Contributions to Geology Special Paper 3:95117.CrossRefGoogle Scholar
Leopold, E. B., and Pakiser, H. M. 1964. A preliminary report on the pollen and spores of the Pre-Selma Upper Cretaceous strata of western Alabama. Geological Survey Bulletin 1160–E:7195.Google Scholar
Lidgard, S., and Crane, P. R. 1988. Quantitative analyses of the early angiosperm radiation. Nature 331:344346.Google Scholar
Lidgard, S., and Crane, P. R. 1990. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology 16:7793.Google Scholar
Lidgard, S., and Roy, K. 1994. Biotic replacements in the fossil record: new and neglected types of evidence. Geological Society of America Abstracts with Programs 26:52.Google Scholar
Lidgard, S., McKinney, F. K., and Taylor, P. D. 1993. Competition, clade replacement, and a history of cyclostome and cheilostome bryozoan diversity. Paleobiology 19:352371.Google Scholar
Lindström, S., McLoughlin, S., and Drinnan, A. N. 1997. Intraspecific variation of taeniate bisaccate pollen within Permian glossopterid sporangia, from the Prince Charles Mountains, Antarctica. International Journal of Plant Sciences 158:673684.Google Scholar
Lohrengel, C. F. II. 1970. Palynology of the Kaiparowits Formation, Garfield County, Utah. Brigham Young University, Geology Studies 16:61180.Google Scholar
Lupia, R. 1997. Variation within and among paleobotanical samples: are we measuring patchy vegetation? Geological Society of America Abstracts with Programs 29:430.Google Scholar
Maas, M. C., Krause, D. W., and Strait, S. G. 1988. The decline of Plesioadapiformes (Mammalia:? Primates) in North America: displacement or replacement. Paleobiology 14:410431.Google Scholar
Mabberley, D. J. 1993. The plant book, a portable dictionary of the higher plants. Cambridge University Press, Cambridge.Google Scholar
May, F. E., and Traverse, A. 1973. Palynology of the Dakota Sandstone (middle Cretaceous) near Bryce Canyon National Park, southern Utah. Geoscience and Man 7:5764.CrossRefGoogle Scholar
McIntyre, D. J. 1974. Palynology of an Upper Cretaceous section, Horton River, District of Mackenzie, N.W.T. Geological Survey of Canada Paper 74–14:157.Google Scholar
McIntyre, D. J., and Brideaux, W. W. 1980. Valanginian miospore and microplankton assemblages from the northern Richardson Mountains, District of Mackenzie, Canada. Geological Survey of Canada Bulletin 320:157.Google Scholar
McKinney, F. K. 1995. One hundred million years of competitive interactions between bryozoan clades: asymmetrical but not escalating. Biological Journal of the Linnean Society 56:465481.Google Scholar
McKinney, F. K., Lidgard, S., Sepkoski, J. J. Jr., and Taylor, P. D. 1998. Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281:807809.Google Scholar
McKinney, F. K., Lidgard, S., Taylor, P.D.In press. Macroevolutionary trends: perception depends on the measure used. Pp. 000000in Jackson, J. B. C., Lidgard, S., and McKinney, F. K., eds. Process from pattern in the fossil record. University of Chicago Press, Chicago.Google Scholar
McKinney, M. L. 1990. Classifying and analysing evolutionary trends. Pp. 2858in McNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
McKinney, M. L. 1996. The biology of fossil abundance. Revista Española de Paleontología 11:125133.Google Scholar
McNaughton, S. J., and Wolf, L. L. 1970. Dominance and the niche in ecological systems. Science 167:131139.Google Scholar
Miller, A. I. 1997a. Dissecting global diversity patterns: examples from the Ordovician radiation. Annual Review of Ecology and Systematics 28:85104.Google Scholar
Miller, A. I. 1997b. Comparative diversification dynamics among palaeocontinents during the Ordovician radiation. Geobios, Mémoire Spécial 20:397406.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.Google Scholar
Muller, J. 1970. Palynological evidence on early differentiation of angiosperms. Biological Reviews 45:417451.Google Scholar
Muller, J. 1984. Significance of fossil pollen for angiosperm history. Annals of the Missouri Botanical Garden 71:419443.Google Scholar
Nichols, D. J., and Bryant, B. 1986a. Palynology of the Current Creek and Mesaverde Formations in the Current Creek-Duchesne River area, Duchesne and Wasatch Counties, Utah. U.S. Geological Survey Open File Report 86–160.Google Scholar
Nichols, D. J., and Bryant, B. 1986b. Palynologic data from Cretaceous and Early Tertiary rocks in the Salt Lake 30′ × 60′ quadrangle. U.S. Geological Survey Open File Report 86–116.Google Scholar
Nichols, D. J., Jarzen, D. M., Orth, C. J., and Oliver, P. Q. 1986. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan. Science 231:714717.Google Scholar
Nichols, D. J., Fleming, R. F., and Frederiksen, N. O. 1990. Palynological evidence of effects of the terminal Cretaceous event on terrestrial floras in western North America. Pp. 351364in Kauffman, E. G. and Walliser, O. H., eds. Extinction events in Earth history. Springer, Berlin.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants: a preliminary assessment. Evolutionary Biology 12:189.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1983. Patterns in vascular land plant diversification. Nature 303:624626.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1985. Patterns in vascular plant diversification: an analysis at the species level. Pp. 97128in Valentine, J. W., ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, N.J.Google Scholar
Nixon, K. C., Crepet, W. L., Stevenson, D., and Friis, E. M. 1994. A reevaluation of seed plant phylogeny. Annals of the Missouri Botanical Garden 81:484533.Google Scholar
Norris, G. 1967. Spores and pollen from the lower Colorado Group (Albian-?Cenomanian) of Central Alberta. Palaeontographica, Abteilung B 120:72115.Google Scholar
Norris, G., Jarzen, D. M., and Awai-Thorne, B. V. 1975. Evolution of the Cretaceous terrestrial palynoflora in western Canada. Geological Association of Canada Special Paper 13:333364.Google Scholar
Norris, G., Telford, P. G. and Vos, M. A. 1976. An Albian microflora from the Mattagami Formation, James Bay Lowlands, Ontario. Canadian Journal of Earth Sciences 13:400403.Google Scholar
Orlansky, R. 1971. Palynology of the Upper Cretaceous Straight Cliffs Sandstone, Garfield County, Utah. Utah Geological and Mineralogical Survey Bulletin 89:157.Google Scholar
Palmer, A. R. 1983. The Decade of North American Geology 1983 geologic timescale. Geology 11:503504.Google Scholar
Pfefferkorn, H. W., and Thomson, M. C. 1982. Changes in dominance patterns in upper Carboniferous plant-fossil assemblages. Geology 10:641644.Google Scholar
Phillips, T. L., and Peppers, R. A. 1984. Changing patterns of Pennsylvanian coal-swamp vegetation and implications for climatic control on coal occurrences. International Journal of Coal Geology 3:205255.Google Scholar
Phillips, T. L., Peppers, R. A., Avcin, M. J., and Laughnan, P. F. 1974. Fossil plant and coal: patterns of changes in Pennsylvanian coal swamp of the Illinois Basin. Science 184:13671369.Google Scholar
Pierce, R. L. 1961. Lower Upper Cretaceous plant microfossils from Minnesota. University of Minnesota and Minnesota Geological Survey Bulletin 42:181.Google Scholar
Playford, G. 1971. Palynology of Lower Cretaceous (Swan River) strata of Saskatchewan and Manitoba. Palaeontology 14:533565.Google Scholar
Ravn, R. L. 1995. Miospores from the Muddy Sandstone (Upper Albian), Wind River Basin, Wyoming, USA. Palaeontographica, Abteilung B 234:4191.Google Scholar
Ravn, R. L., and Witzke, B. J. 1995. The palynostratigraphy of the Dakota Formation (?Late Albian-Cenomanian) in its type area, northwestern Iowa and northeastern Nebraska, USA. Palaeontographica, Abteilung B 234:93171.Google Scholar
Regal, P. J. 1977. Ecology and evolution of flowering plant dominance. Science 196:622629.Google Scholar
Reinhardt, J., Christopher, R. A., and Owens, J. P. 1980. Lower Cretaceous stratigraphy of the core. Virginia Division of Mineral Resources Publication 20:88.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Rosenzweig, M. L., and McCord, R. D. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:202213.Google Scholar
Rouse, G. E., and Srivastava, S. K. 1972. Palynological zonation of Cretaceous and Early Tertiary rocks of the Bonnet Plume Formation, northeastern Yukon, Canada. Canadian Journal of Earth Sciences 9:11631179.Google Scholar
Roy, K. 1994. Effects of Mesozoic Marine Revolution on the taxonomic, morphologic, and biogeographic evolution of a group: aporrhaid gastropods during the Mesozoic. Paleobiology 20:274296.Google Scholar
Roy, K. 1996. The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods. Paleobiology 22:436452.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.Google Scholar
Sepkoski, J. J. Jr. 1996. Competition in macroevolution: the double wedge revisited. Pp. 211255in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Sims, H. J., Herendeen, P. S., Lupia, R., Christopher, R. A., and Crane, P. R.In press. Fossil flowers with Normapolles pollen from the Late Cretaceous of southeastern North America. Review of Palaeobotany and Palynology.Google Scholar
Singh, C. 1964. Microflora of the lower Cretaceous Mannville Group, east-central Alberta. Research Council of Alberta Bulletin 15:1239.Google Scholar
Singh, C. 1971. Lower Cretaceous microfloras of the Peace River area, northwestern Alberta. Research Council of Alberta Bulletin 28:1542.Google Scholar
Skog, J. E., and Dilcher, D. L. 1994. Lower vascular plants of the Dakota Formation in Kansas and Nebraska, USA. Review of Palaeobotany and Palynology 80:118.Google Scholar
Smith, P. E., Evenson, N. M., York, D., Chang, M., Jin, F., Li, F., Cumbaa, S., and Russell, D. 1995. Dates and rates in ancient lakes: 40Ar-39Ar evidence for an Early Cretaceous age for the Jehol Group, northeast China. Canadian Journal of Earth Science 32:14261431.CrossRefGoogle Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2d edition. W. H. Freeman, New York.Google Scholar
Solow, A. R. 1994. Detecting change in composition of a multispecies assembly. Biometrics 50:556565.Google Scholar
Spicer, R. A., Parrish, J. T., and Grant, P. R. 1992. Evolution of vegetation and coal-forming environments in the Late Cretaceous of the North Slope of Alaska. In McCabe, P. J. and Parrish, J. T., eds. Controls on the distribution and quality of Cretaceous coals. Geological Society of America Special Paper 267:177192.CrossRefGoogle Scholar
Stanley, E. A. 1965. Upper Cretaceous and Paleocene plant microfossils and Paleocene dinoflagellates and hystrichosphaerids from northwestern South Dakota. Bulletins of American Paleontology 49:177384.Google Scholar
Stone, J. F. 1973. Palynology of the Almond Formation (Upper Cretaceous), Rock Springs Uplift, Wyoming. Bulletins of American Paleontology 64:1135.Google Scholar
Sun, G., Dilcher, D. L., Zheng, S., and Zhou, Z. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science 282:16921695.Google Scholar
Sweet, A. R., and Braman, D. R. 1989. A distinctive terrestrial palynofloral assemblage from the lower Campanian Chungo Member, Wapiabi Formation, southwestern Alberta: a key to regional correlations. Geological Survey of Canada Paper 89–8:3240.Google Scholar
Takhtajan, A. 1969. Flowering plants, origin and dispersal. Oliver and Boyd, Edinburgh.Google Scholar
Takhtajan, A. 1976. Neoteny and the origin of flowering plants. Pp. 207219in Beck, 1976.Google Scholar
Taylor, D. W., and Hickey, L. J. 1996. Evidence for and implications of an herbaceous origin for angiosperms. Pp. 232266in Taylor, D. W. and Hickey, L. J., eds. Flowering plant origin, evolution and phylogeny. Chapman and Hall, New York.Google Scholar
Taylor, T. N., and Taylor, E. L. 1993. The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs, N.J.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 480625in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Traverse, A. 1988. Paleopalynology. Unwin Hyman, Boston.Google Scholar
Trevisan, L. 1988. Angiospermous pollen (monosulcate-trichotomosulcate phase) from the very early Lower Cretaceous of southern Tuscany (Italy). Seventh international palynological congress, Brisbane, Abstracts, p. 17.Google Scholar
Tschudy, B. D. 1973. Palynology of the Upper Campanian (Cretaceous) Judith River Formation, North-Central Montana. U.S. Geological Survey Professional Paper 770:142.Google Scholar
Tschudy, R. H. 1976. Palynology of Crevasse Canyon and Menefee Formation of San Juan Basin. New Mexico Bureau of Mines and Mineral Resources Circular 154:4855.Google Scholar
Tschudy, R. H., Tschudy, B. D., and Craig, L. C. 1984. Palynological evaluation of the Cedar Mountain and Burro Canyon Formations, Colorado Plateau. U.S. Geological Survey Professional Paper 1281:121.Google Scholar
Upchurch, G. R., and Doyle, J. A. 1981. Paleoecology of the conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia. Pp. 167202in Romans, R. C., ed. Geobotany II. Plenum, New York.Google Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous floras and climates of the earth. Cambridge University Press, Cambridge.Google Scholar
Ward, J. V. 1986. Early Cretaceous angiosperm pollen from the Cheyenne and Kiowa Formations (Albian) of Kansas, USA. Palaeontographica, Abteilung B 202:181.Google Scholar
Ward, J. V., Doyle, J. A., and Hotton, C. L. 1989. Probable granular magnoliid angiosperm pollen from the Early Cretaceous. Pollen et Spores 31:113132.Google Scholar
Watson, J. 1988. The Cheirolepidiaceae. Pp. 382447in Beck, C. B., ed. Origin and early evolution of gymnosperms. Columbia University Press, New York.Google Scholar
Webb, T. III, Howe, S. E., Bradshaw, R. H. W., and Heide, K. 1981. Estimating plant abundances from pollen percentages: the use of regression analysis. Review of Palaeobotany and Palynology 34:269300.Google Scholar
Westrop, S. R. 1991. Intercontinental variation in mass extinction patterns: influence of biogeographic structure. Paleobiology 17:363368.Google Scholar
Whittaker, R. H. 1973. Dominance-types. In Whittaker, R. A., ed. Ordination and classification of communities. Handbook of Vegetation Science 5:389402. Dr. W. Junk b.v., The Hague.Google Scholar
Wilson, M. A. 1978. Palynology of three sections across the uppermost Cretaceous/Paleocene boundary in the Yukon Territory and District of Mackenzie. Palaeontographica, Abteilung B 166:99183.Google Scholar
Wing, S. L., and Boucher, L. D. 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annual Review of Earth and Planetary Sciences 26:379421.Google Scholar
Wing, S. L., and DiMichele, W. A. 1995. Conflict between local and global changes in plant diversity through geological time. Palaios 10:551564.Google Scholar
Wing, S. L., Hickey, L. J., and Swisher, C. C. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature 363:342344.Google Scholar
Wingate, F. H. 1980. Plant microfossils from the Denton Shale member of the Bokchito Formation (Lower Cretaceous, Albian) in southern Oklahoma. Oklahoma Geological Survey Bulletin 130:193.Google Scholar
Wolfe, J. A., and Upchurch, G. R. Jr. 1987. North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 61:3377.Google Scholar
Wright, H. E. Jr., Kutzbach, J. E., Webb, T. III, Ruddiman, W. F., Street-Perrott, F. A., and Bartlein, P. J., eds. 1993. Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis.Google Scholar