Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T18:05:30.747Z Has data issue: false hasContentIssue false

The fine structure of sexual stage development and sporogony of Cryptosporidium parvum in cell-free culture

Published online by Cambridge University Press:  03 March 2016

HEBATALLA M. ALDEYARBI
Affiliation:
University of Cologne, Center for Anatomy, Institute I, Joseph-Stelzmann-Street 9, 50937 Cologne, Germany Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
PANAGIOTIS KARANIS*
Affiliation:
University of Cologne, Medical School, Cologne, Germany Thousand Talents Plan of the Chinese Government, Center for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
*
*Corresponding author: H. Aldeyarbi, University of Cologne, Center for Anatomy, Institute I, Joseph-Stelzmann-Street 9, 50937 Cologne, Germany. Telephone/FAX number: +49-2214785202. E-mail: heba_deyarbi@daad-alumni.de

Summary

The sexual stages and new oocysts development of Cryptosporidium parvum were investigated in a cell-free culture system using transmission electron microscopy (TEM). Sexual development was extremely rapid after inoculation of oocysts into the medium. The process began within 1/2–12 h and was completed with new oocyst formation 120 h post-inoculation. The macrogamonts were bounded by two membranes and had amylopectin granules and two distinct types of wall-forming bodies. The microgamonts had a large nucleus showing lobe projections and condensation of chromatin, giving rise to peripherally budding microgametes. The microgametes contained a large area of granular substance containing groups of microtubules surrounding the electron-dense nucleus. In some instances, the dividing microgamy was observed in cell-free cultures with no preceding merogonic process. Fertilization was observed with the bullet-shaped microgamete penetrating an immature macrogamont at 24 and 216 h. The new thin- and thick-walled oocysts had a large residuum with polysaccharide granules and sporogony noted inside these oocysts. Novel immature four-layer walled thick oocysts with irregular knob-like protrusions on the outer layer resembling the immature Eimeria oocysts were also observed. The present study confirms the gametogony and sporogony of C. parvum in cell-free culture and describes their ultra-structure for the first time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aji, T., Flanigan, T., Marshall, R., Kaetzel, C. and Aikawa, M. (1991). Ultrastructural study of asexual development of Cryptosporidium parvum in a human intestinal cell line. Journal of Protozoology 38, 82S84S.Google Scholar
Aldeyarbi, H. M. and Karanis, P. (2014). Electron microscopic study of in vitro axenic development of Cryptosporidium parvum. In 5th International Giardia and Cryptosporidium Conference, 27–30 May, Uppsala, Sweden. 68Google Scholar
Aldeyarbi, H. M. and Karanis, P. (2016 a). The ultra-structural similarities between Cryptosporidium parvum and the gregarines . Journal of Eukaryotic Microbiology 63, 7985.CrossRefGoogle ScholarPubMed
Aldeyarbi, H. M. and Karanis, P. (2016 b). Electron microscopic observation of the early stages of Cryptosporidium parvum asexual multiplication and development in in vitro axenic culture. European Journal of Protistology 52, 3644.CrossRefGoogle ScholarPubMed
Arrowood, M. J. (2002). In vitro cultivation of Cryptosporidium species. Clinical Microbiology Reviews 15, 390400.CrossRefGoogle ScholarPubMed
Aydin, Y. (1999). The ultrastructure of the parasite and the mucus cell relationship and endogenous stages of Cryptosporidium muris in the stomach of laboratory mice. Turkish Journal of Veterinary and Animal Sciences 23, 117125.Google Scholar
Barker, I. K. and Carbonell, P. L. (1974). Cryptosporidium agni sp.n. from lambs, and Cryptosporidium bovis sp.n. from a calf, with observations on the oocyst. Zeitschrift für Parasitenkunde 44, 289298.CrossRefGoogle ScholarPubMed
Belli, S. I., Smith, N. C. and Ferguson, D. J. P. (2006). The coccidian oocyst: a tough nut to crack! Trends in Parasitology 22, 416423.CrossRefGoogle ScholarPubMed
Bird, R. G. and Smith, M. D. (1980). Cryptosporidiosis in man: parasite life cycle and fine structural pathology. Journal of Pathology 132, 217233.CrossRefGoogle ScholarPubMed
Borowski, H., Clode, P. L. and Thompson, R. C. A. (2008). Active invasion and/or encapsulation? A reappraisal of host-cell parasitism by Cryptosporidium . Trends in Parasitology 24, 509516.CrossRefGoogle ScholarPubMed
Bouchet, F. and Boulard, Y. (1991). Ultrastructural changes following treatment with a microwave pulse in the oocyst of Eimeria magna Perard, 1925. Parasitology Research 77, 585589.CrossRefGoogle ScholarPubMed
Boxell, A., Hijjawi, N., Monis, P. and Ryan, U. (2008). Comparison of various staining methods for the detection of Cryptosporidium in cell-free culture. Experimental Parasitology 120, 6772.CrossRefGoogle ScholarPubMed
Buraud, M., Forget, E., Favennec, L., Bizet, J., Gobert, J. G. and Deluol, A. M. (1991). Sexual stage development of cryptosporidia in the Caco-2 cell line. Infection and Immunity 59, 46104613.CrossRefGoogle ScholarPubMed
Campbell, A. T., Robertson, L. J. and Smith, H. V. (1992). Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Applied and Environmental Microbiology 58, 34883493.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (2014). Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of sporozoa. European Journal of Protistology 50, 472495. Epub 2014 July 30.CrossRefGoogle ScholarPubMed
Cheadle, M. A., Toivio-Kinnucan, M. and Blagburn, B. L. (1999). The ultrastructure of gametogenesis of Cryptosporidium baileyi (Eimeriorina; cryptosporidiidae) in the respiratory tract of broiler chickens (Gallus domesticus). Journal of Parasitology 85, 609615.CrossRefGoogle ScholarPubMed
Choi, M.-H., Hong, S.-T., Chai, J.-Y., Park, W.-Y. and Yu, J. R. (2004). In vitro culture of Cryptosporidium muris in a human stomach adenocarcinoma cell line. The Korean Journal of Parasitology 42, 2734.CrossRefGoogle Scholar
Clode, P. L., Koh, W. H. and Thompson, R. C. A. (2015). Life without a host cell: what is Cryptosporidium? Trends in Parasitology 31, 614624.CrossRefGoogle ScholarPubMed
Current, W. L. and Haynes, T. B. (1984). Complete development of Cryptosporidium in cell culture. Science 224, 603605.CrossRefGoogle ScholarPubMed
Current, W. L. and Reese, N. C. (1986). A comparison of endogenous development of three isolates of Cryptosporidium in suckling mice. Journal of Protozoology 33, 98108.CrossRefGoogle ScholarPubMed
Desportes, D. and Schrével, J. (2013). Biology of gregarines and their host-parasite interactions. In Treatise on Zoology – Anatomy, Taxonomy, Biology: The Early Branching Apicomplexa (ed. Desportes, D. and Schrével, J.), Vol. 2, pp. 219279. Brill Academic Publishers, Leiden–Boston.Google Scholar
Desser, S. S. (1972). Gametocyte maturation, exflagellation and fertilization in Parahaemoproteus ( = Haemoproteus) velans (Coatney & Roudabush) (Haemosporidia: Haemoproteidae): an ultrastructural study. Journal of Protozoology 19, 287296.CrossRefGoogle Scholar
Dubey, J. P., Lindsay, D. S. and Speer, C. A. (1998). Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Reviews 11, 267299.CrossRefGoogle ScholarPubMed
Dubey, J. P., Markovits, J. E. and Killary, K. A. (2002). Cryptosporidium muris-like infection in stomach of cynomolgus monkeys (Macaca fascicularis). Veterinary Pathology 39, 363371.CrossRefGoogle ScholarPubMed
Entzeroth, R. (1982). Ultrastructure of gamonts and gametes and fertilization of Sarcocystis sp. from the roe deer (Capreolus capreolus) in dogs. Zeitschrift für Parasitenkunde 67, 147153.CrossRefGoogle ScholarPubMed
Fayer, R. (2008). General biology. In Cryptosporidium and Cryptosporidiosis, 2nd Edn (ed. Fayer, R. and Xiao, L.), pp. 1726. CRC Press, IWA Publication, Boca Raton, FL; London.Google Scholar
Ferguson, D. J. (2009). Toxoplasma gondii: 1908–2008, homage to Nicolle, Manceaux and Splendore. Memórias do Instituto Oswaldo Cruz 104, 133148.CrossRefGoogle ScholarPubMed
Ferguson, D. J., Birch-Andersen, A., Hutchison, W. M. and Siim, J. C. (1977). Cytochemical electron microscopy on polysaccharide granules in the endogenous forms of Eimeria brunette . Acta Pathologica Microbiologica Scandinavica Series B: Microbiology 85, 241248.CrossRefGoogle Scholar
Ferguson, D. J., Birch-Andersen, A., Siim, J. C. and Hutchison, W. M. (1979). Ultrastructural studies on the sporulation of oocysts of Toxoplasma gondii. III. Formation of the sporozoites within the sporocysts. Acta Pathologica Microbiologica Scandinavica Series B: Microbiology 87, 253260.CrossRefGoogle ScholarPubMed
Goebel, E. and Braendler, U. (1982). Ultrastructure of microgametogenesis, microgametes and gametogamy of Crytosporidium sp. in the small intestine of mice. Protistologica 18, 331344.Google Scholar
Hampton, J. C. and Rosario, B. (1966). The attachment of protozoan parasites to intestinal epithelial cells of the mouse. Journal of Parasitology 52, 939949.CrossRefGoogle Scholar
Harris, J. R. and Petry, F. (1999). Cryptosporidium parvum: structural components of the oocyst wall. Journal of Parasitology 85, 839849.CrossRefGoogle ScholarPubMed
Harris, J. R., Adrian, M. and Petry, F. (2004). Amylopectin: a major component of the residual body in Cryptosporidium parvum oocysts. Parasitology 128, 269282.CrossRefGoogle Scholar
Hijjawi, N., Estcourt, A., Yang, R., Monis, P. and Ryan, U. (2010). Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Veterinary Parasitology 169, 2936.CrossRefGoogle ScholarPubMed
Hijjawi, N. S., Meloni, B. P., Ng'anzo, M., Ryan, U. M., Olson, M. E., Cox, P. T., Monis, P. T. and Thompson, R. C. A. (2004). Complete development of Cryptosporidium parvum in host cell-free culture. International Journal for Parasitology 34, 769777.CrossRefGoogle ScholarPubMed
Jenkins, M. B., Eaglesham, B. S., Anthony, L. C., Kachlany, S. C., Bowman, D. D. and Ghiorse, W. C. (2010). Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology 76, 19261934.CrossRefGoogle Scholar
Kar, S., Daugschies, A., Cakmak, A., Yilmazer, N., Dittmar, K. and Bangoura, B. (2011). Cryptosporidium parvum oocyst viability and behaviour of the residual body during the excystation process. Parasitology Research 109, 17191723.CrossRefGoogle ScholarPubMed
Karanis, P. and Aldeyarbi, H. M. (2011). Evolution of Cryptosporidium in vitro culture. International Journal for Parasitology 41, 12311242.CrossRefGoogle ScholarPubMed
Koh, W., Clode, P. L., Monis, P. and Thompson, R. C. A. (2013). Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system. Parasites and Vectors 6, 270.CrossRefGoogle Scholar
Koh, W., Thompson, A., Edwards, H., Monis, P. and Clode, P. L. (2014). Extracellular excystation and development of Cryptosporidium: tracing the fate of oocysts within Pseudomonas aquatic biofilm systems. BMC Microbiology 14, 281.CrossRefGoogle ScholarPubMed
Kuvardina, O. N. and Simdyanov, T. G. (2002). Fine structure of syzygy in Selenidium pennatum (Sporozoa, Archigregarinida). Protistology 2, 169177.Google Scholar
Ladda, R., Aikawa, M. and Sprinz, H. (2001). Penetration of erythrocytes by merozoites of mammalian and avian malarial parasites. 1969. Journal of Parasitology 87, 470478.Google ScholarPubMed
Landsberg, J. H. and Paperna, I. (1986). Ultrastructural study of the coccidian Cryptosporidium sp. from stomachs of juvenile cichlid fish. Diseases of Aquatic Organisms 2, 1320.CrossRefGoogle Scholar
Lefkowitch, J. H., Krumholz, S., Feng-Chen, K. C., Griffin, P., Despommier, D. and Brasitus, T. A. (1984). Cryptosporidiosis of the human small intestine: a light and electron microscopic study. Human Pathology 15, 746752.CrossRefGoogle ScholarPubMed
Mehlhorn, H. and Heydorn, A. O. (1979). Electron microscopical study on gamogony of Sarcocystis suihominis in human tissue cultures. Zeitschrift für Parasitenkunde 58, 97113.CrossRefGoogle Scholar
Melicherová, J., Ilgová, J., Kváč, M., Sak, B., Koudela, B. and Valigurová, A. (2014). Life cycle of Cryptosporidium muris in two rodents with different responses to parasitisation. Parasitology 141, 287303.CrossRefGoogle Scholar
Omoto, C. K., Toso, M., Tang, K. and Sibley, L. D. (2004). Expressed sequence tag (EST) analysis of Gregarine gametocyst development. International Journal for Parasitology 34, 12651271.CrossRefGoogle ScholarPubMed
Ostrovska, K. and Paperna, I. (1990). Cryptosporidium sp. of the starred lizard Agama stellio: ultrastructure and life cycle. Parasitology Research 76, 712720.CrossRefGoogle Scholar
Paperna, I. and Vilenkin, M. (1996). Cryptosporidiosis in the gourami Trichogaster leeri: description of a new species and a proposal for a new genus, Piscicryptosporidium, for species infecting fish. Diseases of Aquatic Organisms 27, 95101.CrossRefGoogle Scholar
Porchet-Hennere, E. and Nicolas, G. (1983). Are rhoptries of Coccidia really extrusomes? Journal of Ultrastructure Research 84, 194203.CrossRefGoogle ScholarPubMed
Putignani, L. and Menichella, D. (2010). Global distribution, public health and clinical impact of the protozoan pathogen Cryptosporidium . Interdisciplinary Perspectives on Infectious Diseases 2010, Article ID 753512. doi: 10.1155/2010/753512.CrossRefGoogle ScholarPubMed
Reduker, D. W., Speer, C. A. and Blixt, J. A. (1985 a). Ultrastructural changes in the oocyst wall during excystation of Cryptosporidium parvum (Apicomplexa; Eucoccidiorida). Canadian Journal of Zoology 63, 18921896.CrossRefGoogle Scholar
Reduker, D. W., Speer, C. A. and Blixt, J. A. (1985 b). Ultrastructure of Cryptosporidium parvum oocysts and excysting sporozoites as revealed by high resolution scanning electron microscopy. Journal of Protozoology 32, 708711.CrossRefGoogle ScholarPubMed
Roberts, W. L., Speer, C. A. and Hammond, D. M. (1970). Electron and light microscope studies of the oocyst walls, sporocysts, and excysting sporozoites of Eimeria callospermophili and E. larimerensis . Journal of Parasitology 56, 918926.CrossRefGoogle ScholarPubMed
Robertson, L. J., Campbell, A. T. and Smith, H. V. (1993). In vitro excystation of Cryptosporidium parvum . Parasitology 106, 1319.CrossRefGoogle ScholarPubMed
Rosales, M. J., Mascaro, C. and Osuna, A. (1993). Ultrastructural study of Cryptosporidium development in Madin-Darby canine kidney cells. Veterinary Parasitology 45, 267273.CrossRefGoogle ScholarPubMed
Rosales, M. J., Cordón, G. P., Moreno, M. S., Sánchez, C. M. and Mascaró, C. (2005). Extracellular like-gregarine stages of Cryptosporidium parvum . Acta Tropica 95, 7478.CrossRefGoogle ScholarPubMed
Scholtyseck, E., Mehlhorn, H. and Hammond, D. M. (1971). Fine structure of macrogametes and oocysts of Coccidia and related organisms. Zeitschrift für Parasitenkunde 37, 143.CrossRefGoogle ScholarPubMed
Scholtyseck, E., Mehlhorn, H. and Hammond, D. M. (1972). Electron microscope studies of microgametogenesis in Coccidia and related groups. Zeitschrift für Parasitenkunde 38, 95131.CrossRefGoogle ScholarPubMed
Shah, H. L. (1963). Coccidia (Protozoa: Eimeriidae) of domestic sheep in the United States, with descriptions of the sporulated oocysts of six species. Journal of Parasitology 49, 799.CrossRefGoogle ScholarPubMed
Sibert, G. J. and Speer, C. A. (1980). Fine structure of zygotes and oocysts of Eimeria nieschulzi . Journal of Protozoology 27, 374379.CrossRefGoogle ScholarPubMed
Sinden, R. E., Canning, E. U. and Spain, B. (1976). Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society 193, 5576.Google ScholarPubMed
Smith, H. V., Nichols, Rosely, A. B. and Grimason, A. M. (2005). Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends in Parasitology 21, 133142.CrossRefGoogle Scholar
Spano, F., Puri, C., Ranucci, L., Putignani, L. and Crisanti, A. (1997). Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology 114, 427437.CrossRefGoogle ScholarPubMed
Speer, C. A. and Duszynski, D. W. (1975). Fine structure of the oocyst walls of Isospora serini and Isospora canaria and excystation of Isospora serini from the canary, Serinus canarius L. Journal of Protozoology 22, 476481.CrossRefGoogle Scholar
Speer, C. A. and Dubey, J. P. (2001). Ultrastructure of schizonts and merozoites of Sarcocystis neurona . Veterinary Parasitology 95, 263271.CrossRefGoogle ScholarPubMed
Templeton, T. J., Lancto, C. A., Vigdorovich, V., Liu, C., London, N. R., Hadsall, K. Z. and Abrahamsen, M. S. (2004). The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma . Infection and Immunity 72, 980987.CrossRefGoogle Scholar
Tyzzer, E. E. (1910). An extracellular coccidium, Cryptosporidium muris (Gen. Et Sp. Nov.), of the gastric glands of the common mouse. Journal of Medical Research 23, 487510·3.Google ScholarPubMed
Uni, S., Iseki, M., Maekawa, T., Moriya, K. and Takada, S. (1987). Ultrastructure of Cryptosporidium muris (strain RN 66) parasitizing the murine stomach. Parasitology Research 74, 123132.CrossRefGoogle ScholarPubMed
Valigurová, A., Hofmannová, L., Koudela, B. and Vávra, J. (2007). An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris . Journal of Eukaryotic Microbiology 54, 495510.CrossRefGoogle ScholarPubMed
Varghese, T. (1975). The fine structure of the endogenous stages of Eimeria labbeana: 2. Mature macrogamonts and young oocysts. Zeitschrift für Parasitenkunde 46, 4351.CrossRefGoogle ScholarPubMed
Vavra, J. and McLaughlin, R. E. (1970). The fine structure of some developmental stages of Mattesia grandis McLaughlin (Sporozoa, Neogregarinida), a parasite of the boll weevil Anthonomus grandis Boheman. Journal of Protozoology 17, 483496.CrossRefGoogle Scholar
Vetterling, J. M., Takeuchi, A. and Madden, P. A. (1971). Ultrastructure of Cryptosporidium wrairi from the guinea pig. Journal of Protozoology 18, 248260.CrossRefGoogle ScholarPubMed
Vetterling, J. M., Pacheco, N. D. and Fayer, R. (1973). Fine structure of gametogony and oocyst formation in Sarcocystis sp. in cell culture. Journal of Protozoology 20, 613621.CrossRefGoogle ScholarPubMed
Xiao, L., Singh, A., Limor, J., Graczyk, T. K., Gradus, S. and Lal, A. (2001). Molecular characterization of Cryptosporidium oocysts in samples of raw surface water and wastewater. Applied and Environmental Microbiology 67, 10971101.CrossRefGoogle ScholarPubMed
Yang, S., Healey, M. C., Du, C. and Zhang, J. (1996). Complete development of Cryptosporidium parvum in bovine fallopian tube epithelial cells. Infection and Immunity 64, 349354.CrossRefGoogle ScholarPubMed