Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T01:14:03.278Z Has data issue: false hasContentIssue false

An estimate of the size of the metacyclic variable antigen repertoire of Trypanosoma brucei rhodesiense

Published online by Cambridge University Press:  06 April 2009

C. M. R. Turner
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ
J. D. Barry
Affiliation:
Institute of Genetics, University of Glasgow, Glasgow G11 5JS
I. Maudlin
Affiliation:
Tsetse Research Laboratory, University of Bristol, Langford, Bristol BS18 7DU
K. Vickerman
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ

Summary

A group of 27 variable antigen type (VAT)-specific monoclonal antibodies (McAbs) have been made against metacyclic forms of a cloned stock of Trypanosoma brucei rhodesiense. In combination, these labelled in immunofluorescence 99·3% of trypanosomes in salivary probes from tsetse flies. The 0·7% of unlabelled trypanosomes were believed to be uncoated forms. The ability of a mixture of antibodies to kill metacyclics in vitro by complement-mediated lysis, thus neutralizing their infectivity for mice, was tested. The antibody mixture consisted of 24 McAbs plus 3 VAT-specific rabbit antisera. In 12 replicate experiments this mixture of antibodies prevented infection of mice. Parallel controls showed that neutralization was probably antibody-mediated and VAT specific. However, we have not been able to repeat these results on a long-term basis; this may be due to a loss of neutralizing activity by one of the McAbs. The successful neutralization experiments indicate that the number of VATs in the metacyclic repertoire of one stock of T. b. rhodesiense is limited to at most 27.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barry, J. D., Crowe, J. S. & Vickerman, K. (1983). Instability of the Trypanosoma brucei rhodesiense metacyclic variable antigen repertoire. Nature, London 306, 699701.CrossRefGoogle ScholarPubMed
Barry, J. D., Crowe, J. S. & Vickerman, K. (1985). Neutralization of individual variable antigen types in metacyclic populations of Trypanosoma brucei does not prevent their subsequent expression in mice. Parasitology 90, 7988.CrossRefGoogle Scholar
Cornelissen, A. W. C. A., Bakkeren, G. A. M., Barry, J. D., Michels, P. A. M. & Borst, P. (1985). Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Research 13, 6441–76.CrossRefGoogle ScholarPubMed
Crowe, J. S., Barry, J. D., Luckins, A. G., Ross, C. A. & Vickerman, K. (1983). All metacyclic variable antigen types of Trypanosoma congolense identified using monoclonal antibodies. Nature, London 306, 389–91.CrossRefGoogle ScholarPubMed
Crowe, J. S., Lamont, A. G., Barry, J. D. & Vickerman, K. (1984). Cytotoxicity of monoclonal antibodies to Trypanosoma brucei. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 508–13.CrossRefGoogle ScholarPubMed
Delauw, M. F., Laurent, M., Paindavoine, P., Aerts, D., Pays, E., Le Ray, D. & Steinert, M. (1987). Characterization of genes coding for two major metacyclic surface antigens in Trypanosoma brucei. Molecular and Biochemical Parasitology 23, 917.CrossRefGoogle ScholarPubMed
Esser, K. M. & Schoenbechler, M. J. (1985). Expression of two variant surface glycoproteins on individual African trypanosomes during antigen switching. Science 229, 190–3.CrossRefGoogle ScholarPubMed
Hajduk, S. L., Cameron, C. R., Barry, J. D. & Vickerman, K. (1981). Antigenic variation in cyclically transmitted Trypanosoma brucei. Variable antigen type composition of metacyclic trypanosome populations from the salivary glands of Glossina morsitans. Parasitology 83, 595607.CrossRefGoogle Scholar
Herbert, W. J. & Lumsden, W. H. R. (1976). Trypanosoma brucei: a rapid ‘matching’ method for estimating the host's parasitaemia. Experimental Parasitology 40, 427–31.CrossRefGoogle Scholar
Maudlin, I. & Dukes, P. (1985). Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies. I. Selection of susceptible and refractory lines of Glossina morsitans morsitans. Annals of Tropical Medicine and Parasitology 79, 317–24.CrossRefGoogle ScholarPubMed
Pearson, T. W., Pinder, M., Roelants, G. E., Kar, S. K., Lundin, L. B., Major-Whitney, K. S. & Hewett, R. S. (1980). Methods for derivation and detection of antiparasite monoclonal antibodies. Journal of Immunological Methods 34, 141–54.CrossRefGoogle ScholarPubMed
Tait, A., Barry, J. D., Wink, R., Sanderson, A. & Crowe, J. A. (1985). Enzyme variation in T. brucei sspp. II. Evidence for T. b. rhodesiense being a set of variants of T. b. brucei. Parasitology 90, 89100.CrossRefGoogle Scholar
Turner, C. M. R., Barry, J. D. & Vickerman, K. (1986). Independent expression of the metacyclic and bloodstream variable antigen repertoires of Trypanosoma brucei rhodesiense. Parasitology 92, 6773.CrossRefGoogle ScholarPubMed
Turner, M. J. (1984). Antigenic variation in its biological context. Philosophical Transactions of the Royal Society of London, B 307, 2740.Google ScholarPubMed
Van Meirvenne, N., Janssens, P. G. & Magnus, E. (1975). Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. I. Rationalization of the experimental approach. Annales de la Société belge de Medicine tropicale 55, 123.Google ScholarPubMed