Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T19:45:11.041Z Has data issue: false hasContentIssue false

Laboratory Studies of the Ecological Significance of Host-Algal Nutritional Associations in Solitary and Colonial Radiolaria

Published online by Cambridge University Press:  11 May 2009

O. R. Anderson
Affiliation:
Biological Oceanography, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964
N. R. Swanberg
Affiliation:
Biological Oceanography, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964
P. Bennett
Affiliation:
Biological Oceanography, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964

Extract

Symbiont-bearing solitary and colonial radiolaria occur abundantly in diverse water masses throughout the major oceans of the world, including oligotrophic surface water (e.g. Strelkov & Reshetnyak, 1971; Casey, 1971, 1977; Anderson, 1983; Swanberg, 1979, 1983). Studies of their nutrition (Anderson, 1978, 1983; Swanberg, 1983) suggest that the algal symbionts may serve a substantial role in sustaining host nutrition. Our studies on the role of symbiotic algae in radiolaria have shown that Amphidinium-type, dinoflagellate symbionts (Anderson, 1983, p. 118) associated with the solitary species, Thalassicolla nucleata, and a colonial form Collosphaera sp. contribute photosynthetically-derived carbon to the host. The amount assimilated by T. nucleata is proportional to the primary productivity of the symbionts (Anderson, Swanberg & Bennett, 1983 b). Little is known, however, about the effects of environmental variables such as light intensity and quality on the primary productivity of the symbionts and the kinds of photosynthetic products accumulated within the host cytoplasm.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O. R., 1976 a. A cytoplasmic fine-structure study of two spumellarian radiolaria and their symbionts. Marine Micropaleontology, 1, 8189.CrossRefGoogle Scholar
Anderson, O. R., 1976 b. Ultrastructure of a colonial radiolarian Collozoum inerme and a cyto-chemical determination of the role of its zooxanthellae. Tissue and Cell, 8, 195208.CrossRefGoogle Scholar
Anderson, O. R., 1976 c. Fine structure of a collodarian radiolarian (Sphaerozoum punctatum Muller, 1858) and cytoplasmic changes during reproduction. Marine Micropaleontology, 1, 287297.CrossRefGoogle Scholar
Anderson, O. R., 1977. Cytoplasmic fine structure of nasselarian Radiolaria. Marine Micropaleontology, 2, 251—264.CrossRefGoogle Scholar
Anderson, O. R., 1978. Fine structure of a symbiont-bearing colonial radiolarian, Collosphaera globularis, and14C isotopic evidence for assimilation of organic substances from its zooxanthellae. Journal of Ultrastructure Research, 62, 181189.CrossRefGoogle Scholar
Anderson, O. R., 1980. Radiolaria. In Biochemistry and Physiology of Protozoa, 2nd edition, vol. 3 (ed. Levandowsky, M. and Hutner, S.), pp. 140. New York: Academic Press.Google Scholar
Anderson, O. R., 1983. Radiolaria. 355 pp. New York: Springer-Verlag.CrossRefGoogle Scholar
Anderson, O. R., Swanberg, N. R. & Bennett, P., 1983 a. Fine structure of yellow-brown symbionts (Prymnesiida) in solitary radiolaria and their comparison with similar acantharian symbionts. Journal of Protozoology, 30, 718—722.CrossRefGoogle Scholar
Anderson, O. R., Swanberg, N. R. & Bennett, P., 1983 b. Assimilation of symbiont-derived photosynthates in some solitary and colonial radiolaria. Marine Biology, 77, 265269.CrossRefGoogle Scholar
Black, C. C. & Burris, J. E., 1983. Diurnal carbon-14 partitioning between zooxanthellae and coral animal tissue of intact Seriatopora hystrix colonies. Marine Biology, 75, 117120.CrossRefGoogle Scholar
Casey, R. E., 1971. Distribution of polycystine radiolaria in the oceans in relation to physical and chemical conditions. In The Micropaleontology of Oceans (ed. Funnell, B. M. and Riedel, W. R.), pp. 151159. Cambridge University Press.Google Scholar
Casey, R. E., 1977. The ecology and distribution of recent radiolaria. In Oceanic Micropaleontology, vol. 2 (ed. Ramsay, A. T. S.), pp. 809845. London: Academic Press.Google Scholar
Crossland, C. J., Barnes, D. J., Cox, T. & Devereux, M., 1980. Compartmentation and turnover of organic carbon in the staghorn coral Acropora formosa. Marine Biology, 59, 181187.CrossRefGoogle Scholar
Dorsey, T. E., Mcdonald, P. & Roels, O., 1977. A heated biuret-Folin protein assay which gives equal absorbance with different proteins. Analytical Biochemistry, 78, 156164.CrossRefGoogle ScholarPubMed
Kellogg, R. B. & Patton, J. S., 1983. Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantea: a model coral polyp. Marine Biology, 75, 137149.CrossRefGoogle Scholar
Patton, J. S. & Burris, J. E., 1983. Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Marine Biology, 75, 131136.CrossRefGoogle Scholar
Schmitz, K. & Kremer, B. P., 1977. Carbon fixation and analysis of assimilates in a coraldinoflagellate symbiosis. Marine Biology, 42, 305313.CrossRefGoogle Scholar
Steeman-Nielsen, E., 1952. The use of radio-active carbon (C14) for measuring organic production in the sea. Journal du Conseil, 18, 117—140.CrossRefGoogle Scholar
Strelkov, A. A. & Reshetnyak, V. V., 1971. Colonial spumellarian radiolarians of the World Ocean. In Explorations of the Fauna of the Seas IX (XVII), Radiolarians of the Ocean (ed. Bykhovsky, B. E.), pp. 295417. Leningrad: Zoological Institute, Academy of the Sciences of the U.S.S.R. [Reports on the Soviet Expeditions.] [In Russian.]Google Scholar
Swanberg, N. R., 1979. The Ecology of Colonial Radiolarians. Ph.D. Thesis, Woods Hole Oceanographic Institution.Google Scholar
Swanberg, N. R., 1983. The trophic role of colonial radiolaria in oligotrophic oceanic environments. Limnology and Oceanography, 28, 655666.CrossRefGoogle Scholar
Swanberg, N. R. & Anderson, O. R., 1981. Collozoum caudatum sp.nov.: a giant colonial radiolarian from equatorial and Gulf Stream waters. Deep-Sea Research, 28A, 10331047.CrossRefGoogle Scholar
Swanberg, N. R. & Harbison, G. R., 1980. The ecology of Collozoum longiforme, sp.nov., a new colonial radiolarian from the equatorial Atlantic Ocean. Deep-Sea Research, 27, 715732.CrossRefGoogle Scholar
Trench, R. K., 1971. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed 14C by zooxanthellae in vitro. Proceedings of the Royal Society (B), 177, 237250.Google Scholar
Waldi, D., 1965. Dunnschicht-chromatographie einiger Zucker und Zuckeralkohole. Journal of Chromatography, 18, 417418.CrossRefGoogle Scholar