Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T15:05:58.101Z Has data issue: false hasContentIssue false

Chemical Survey of the Tamar Estuary I. Properties of the Waters

Published online by Cambridge University Press:  11 May 2009

E. I. Butler
Affiliation:
The Plymouth Laboratory
Susan Tibbitts
Affiliation:
The Plymouth Laboratory

Extract

An initial report is presented on some chemical properties of the waters in the Tamar Estuary. The results are compared to those obtained in the Western Channel during the same period. Considerable differences are shown in the concentrations of inorganic nutrients but the dissolved organic nitrogen concentrations are relatively similar. Dissolved iron has been estimated both before and after the breakdown of organic compounds by photocombustion. The results show the build-up of humic substances and associated iron after heavy rain. When the concentration of suspended sediment in the water is high it can control the level of dissolved phosphorus by removing it from rich water and releasing phosphorus into poor waters.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, F. A. J. & Boalch, G. T. 1961. The ultraviolet absorption of sea water. J. mar. biol. Ass. U.K., Vol. 41, pp. 591–7.Google Scholar
Armstrong, F. A. J. & Butler, E. I. 1962. Hydrographic surveys off Plymouth in 1959 and 1960. J. mar. biol. Ass. U.K., Vol. 42, pp. 445–63.Google Scholar
Armstrong, F. A. J. & Tibbitts, S. 1968. Photochemical combustion of organic matter in sea water, for nitrogen, phosphorus and carbon determination. J. mar. biol. Ass. U.K., Vol. 48, pp. 143–52.Google Scholar
Banoub, M. W. & Williams, P. J. Leb. 1972. Measurements of microbial activity and organic material in the Western Mediterranean Sea. Deep-Sea Res., Vol. 19, No. 6.Google Scholar
Barber, R. T. 1968. Dissolved organic carbon from deep waters resists microbial oxidation. Nature, Lond., Vol. 220, pp. 274–5.Google Scholar
Butler, E. I.Corner, E. D. S. & Marshall, S. M. 1970. On the nutrition and metabolism of zooplankton. VII. Seasonal survey of nitrogen and phosphorus excretion by Calanus in the Clyde Sea area. J. mar. biol. Ass. U.K., Vol. 50, pp. 525–60.Google Scholar
Cooper, L. H. N. 1935. Iron in sea water and marine plankton. Proc. R. Soc. B, No. 810, Vol. 118, pp. 419–38.Google Scholar
Cooper, L. H. N. 1937. Oxidation-reduction potential in sea water. J. mar. biol. Ass. U.K., Vol. XXII, pp. 167–76.Google Scholar
Cooper, L. H. N. & Milne, A. 1938. The ecology of the Tamar estuary. II. Underwater illumination. J, mar. biol. Ass. U.K., Vol. 22, pp. 509–28.Google Scholar
Cooper, L. H. N. & Milne, A. 1939. The ecology of the Tamar estuary. V. Underwater illumination. Revision of data for red light. J. mar. biol. Ass. U.K., Vol. 23, pp. 391–6.Google Scholar
Craigie, J. S. & Mclachlan, J. 1964. Excretion of coloured ultraviolet absorbing substances by marine algae. Can. J. Bot., Vol. 42, pp. 2333.CrossRefGoogle Scholar
Hartley, P. H. T. & Spooner, G. M. 1938. The ecology of the Tamar estuary. I. Introduction. J. mar. biol. Ass. U.K., Vol. 22, pp. 501–8.Google Scholar
Hoather, R. C. 1953. Applications of spectrophotometry in the examination of waters. Proc. Soc. Wat. Treat. Exam., Vol. 2 (1), pp. 9–22.Google Scholar
Holme, N. A. & Mcintyre, A. D. 1971 (eds.). Methods for the study of marine benthos xii. IBP Handbook, No. 16, 334 p. Oxford: Blackwell and Scientific Publications.Google Scholar
Jitts, H. R. 1959. The adsorption of phosphate by estuarine bottom deposits. Aust. J. mar. Freshwat. Res., Vol. 10, pp. 721.Google Scholar
Ketchum, B. H. 1967. Phytoplankton nutrients in Estuaries. Coll. Repr. Woods Hole oceanogr. Instn., Contrib. No. 1563.Google Scholar
Krogh, A. 1934. Conditions of life at great depths in the ocean. Ecol. Monogr., Vol. 4, pp. 430–9.Google Scholar
Manny, B. A.Miller, M. C. & Wetzel, R. G. 1971. Ultraviolet combustion of dissolved organic nitrogen compounds in lake waters. Limnol. Oceanogr., Vol. 16, pp. 7185.Google Scholar
Menzel, D. W. 1964. The distribution of dissolved organic carbon in the Western Indian Ocean. Deep-Sea Res., Vol. 11, pp. 757–65.Google Scholar
Milne, A. 1938. The ecology of the Tamar estuary. III. The salinity and temperature conditions in the lower estuary. J. mar. biol. Ass. U.K., Vol. 22, pp. 529–42.Google Scholar
Milne, A. 1940. The ecology of the Tamar estuary. IV. The distribution of the fauna and flora on buoys. J. mar. biol. Ass. U.K., Vol. 24, pp. 6987.Google Scholar
Miroslav, M. 1969. Investigation of organic pollution of surface waters by ultra violet spectrophotometry. J. Wat. Pollut. Control Fed., Vol. 41, pp. 1923–31.Google Scholar
Mommaerts, J. P. 1969. On the distribution of major nutrients and phytoplankton in the Tamar Estuary. J. mar. biol. Ass. U.K., Vol. 49, 749–65.Google Scholar
Mommaerts, J. P. 1970. On the unusual patterns of phosphate vertical distribution in the Tamar Estuary. J. mar. biol. Ass. U.K., Vol. 50, pp. 849–55.Google Scholar
Murphy, J. & Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica chim. Acta, Vol. 27, pp. 31–6.Google Scholar
Ogura, N. & Hanya, T. 1966. Nature of ultraviolet absorption of sea water. Nature, Lond., Vol. 212, pp. 758.Google Scholar
Ogura, N. & Hanya, T. 1967. Ultraviolet absorption of sea water in relation to organic and inorganic materials. Int. J. Oceanol. Limnol., Vol. 1, pp. 91102.Google Scholar
Percival, E. 1930. A report on the Fauna of the Estuaries of the River Tamar and River Lynher. J. mar. biol. Ass. U.K., Vol. 16, pp. 81108.Google Scholar
Pomeroy, L. R.Smith, E. E. & Grant, C. M. 1965. The exchange of phosphate between estuarine water and sediments. Limnol. Oceanogr., Vol. 10, pp. 167–72.CrossRefGoogle Scholar
Riley, J. P. & Chester, R. (ed.), 1971. In Introduction to Marine Chemistry, xiv + 465 pp. Academic Press.Google Scholar
Rochford, D. J. 1951. Studies in Australian estuarine hydrology. Aust. J. mar. Freshwat. Res., Vol. 2, pp. 1116.Google Scholar
Sieburth, J. Mcn. & Jensen, A. 1968. Studies on algal substances in the sea. I. Gelbstoff (Humic material) in terrestrial and marine waters. J. exp. mar. Biol. Ecol., Vol. 2, pp. 174–89.Google Scholar
Solórzano, L. 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr., Vol. 14, pp. 799801.Google Scholar
Solórzano, L. & Strickland, J. D. H. 1968. Polyphosphate in sea water. Limnol. Oceanogr., Vol. 13, pp. 515–18.Google Scholar
Spooner, G. M. & Moore, H. B. 1940. Ecology of the Tamar Estuary. VI. An account of Macrofauna of intertidal muds. J. mar. biol. Ass. U.K., Vol. 24, pp. 283330.Google Scholar
Strickland, J. D. H. & Parsons, T. R. 1968. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Bd Can., Vol. 167, pp. 105–7.Google Scholar
Vaccaro, R. F. 1962. The oxidation of ammonia in sea water. J. Cons. perm. int. Explor. Mer, Vol. 27, pp. 314.Google Scholar
Wood, E. D.Armstrong, F. A. J. & Richards, F. A. 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. mar. biol. Ass. U.K., Vol. 47, pp. 2331.Google Scholar