Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-24T08:17:00.578Z Has data issue: false hasContentIssue false

Restrained molecular dynamics study of the interaction between bovine κ-casein peptide 98–111 and bovine chymosin and porcine pepsin

Published online by Cambridge University Press:  01 June 2009

Jeffrey E. Plowman
Affiliation:
New Zealand Dairy Research Institute, Palmerston North, New Zealand
Lawrence K. Creamer
Affiliation:
New Zealand Dairy Research Institute, Palmerston North, New Zealand

Summary

The cleavage of bovine κ-casein at the Phe105–Met106* bond by chymosin or pepsin is the first stage in casein micelle coagulation and casein digestion. The nature of the interaction of the peptide His98–Pro–His–Pro–His–Leu–Ser–Phe105–Met–Ala–Ile–Pro-Pro-Lys111 with chymosin and porcine pepsin was investigated using molecular modelling and energy minimization techniques. This study verified and extended a proposed model that electrostatic binding (involving His98, His100, His102 and Lys111 or Lys112) at either end of the active site cleft of chymosin is important for the positioning of residues 103–108 in the cleft. The peptide conformation remained unchanged in going from solution to binding into the active site cleft, with the exception that optimum binding of substrate to chymosin required the isomerization of the His98–Pro99 peptide bond from the trans to the cis conformation. The study also identified an acidic region in porcine pepsin that is in a position to form strong electrostatic interactions with the histidines at the N-terminus of the peptide.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreeva, N., Dill, J. & Gilliland, G. L. 1992 Can enzymes adopt a self-inhibited form ? Results of X-ray crystallographic studies of chymosin. Biochemical and Biophysical Research Communications 184 10741081CrossRefGoogle ScholarPubMed
Baker, E. N. & Hubbard, R. E. 1984 Hydrogen bonding in globular proteins. Progress in Biophysics and Molecular Biology 44 97179CrossRefGoogle ScholarPubMed
Barlow, D. J. & Thornton, J. M. 1983 Ion-pairs in proteins. Journal of Molecular Biology 168 867885CrossRefGoogle ScholarPubMed
Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. 1977 The protein data bank: a computer-based archival file for macromolecular structures. Journal of Molecular Biology 112 535542CrossRefGoogle Scholar
Biosym Technologies 1993 Discover User Guide Part 1, v. 2.9, and Homology User Guide, v. 2.1 San Diego, CA: Biosym TechnologiesGoogle Scholar
Brandts, J. F., Halvorson, H. R. & Brennan, M. 1975 Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14 49534963CrossRefGoogle ScholarPubMed
Brignon, G., Chtourou, A. & Ribadeau-Dumas, B. 1985 Preparation and amino acid sequence of human κ-casein. FEBS Letters 188 4854CrossRefGoogle ScholarPubMed
Carles, C. & Martin, P. 1985 Kinetic study of the action of bovine chymosin and pepsin A on bovine κ-casein. Archives of Biochemistry and Biophysics 242 411416CrossRefGoogle ScholarPubMed
Foltmann, B. 1966 A review on prorennin and rennin. Comptes Rendus des Travaux du Laboratoire Carlsberg 34 143231Google Scholar
Foltmann, B. 1992 Chymosin: a short review on foetal and neonatal gastric proteases. Scandinavian Journal of Clinical and Laboratory Investigation 52 (Suppl. 210) 6579CrossRefGoogle Scholar
Gilliland, G. L., Oliva, M. T. & Dill, J. 1991 Functional implications of the three-dimensional structure of bovine chymosin. In Structure and Function of the Aspartic Proteinases. Genetics, Structures, and Mechanisms, pp. 2337 (Ed. Dunn, B. M.). New York: Plenum PressCrossRefGoogle Scholar
Gilliland, G. L., Winborne, E. L., Nachman, J. & Wlodawer, A. 1990 The three-dimensional structure of recombinant bovine chymosin at 2·3 resolution. Proteins: Structure, Function, and Genetics 8 82101CrossRefGoogle ScholarPubMed
Grathwohl, C. & Wüthrich, K. 1981 NMR studies of the rates of proline cis-trans isomerization in oligopeptides. Biopolymers 20 26232633CrossRefGoogle Scholar
Harboe, M. K. & Foltmann, B. 1975 Bovine pepsin: the sequence of the first 65 amino acid residues (completing the sequence of the first 110 residues of bovine pepsinogen). FEBS Letters 60 133136CrossRefGoogle ScholarPubMed
Hinck, A. P., Eberhardt, E. S. & Markley, J. L. 1993 NMR strategy for determining Xaa-Pro peptide bond configurations in proteins. Mutants of staphylococcal nuclease with altered configuration at proline-117. Biochemistry 32 1181011818CrossRefGoogle ScholarPubMed
James, M. N. G. & Sielecki, A. R. 1983 Structure and refinement of penicillopepsin at 1·8 resolution. Journal of Molecular Biology 163 299361CrossRefGoogle ScholarPubMed
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. 1993 PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26 283291CrossRefGoogle Scholar
Levine, W. B., Alexander, L. J., Hoganson, G. E. & Beattle, C. W. 1992 Cloning and sequencing of the porcine κ-casein cDNA. Animal Genetics 23 361363CrossRefGoogle ScholarPubMed
Loucheux-Lefebvre, M. -H., Aubert, J. -P. & Jollès, P. 1978 Prediction of the conformation of the cow and sheep κ-caseins. Biophysical Journal 23 323336CrossRefGoogle ScholarPubMed
Lu, Q., Wolfe, K. H. & McConnell, D. J. 1988 Molecular cloning of multiple bovine aspartyl protease genes. Gene 71 135146CrossRefGoogle ScholarPubMed
MacArthur, M. W. & Thornton, J. M. 1991 Influence of proline residues on protein conformation. Journal of Molecular Biology 218 397412CrossRefGoogle ScholarPubMed
Morris, A. L., MacArthur, M. W., Hutchinson, E. G. & Thornton, J. M. 1992 Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Genetics 12 345364CrossRefGoogle ScholarPubMed
Newman, M., Safro, M., Frazao, C., Khan, G., Zdanov, A., Tickle, I. J., Blundell, T. L. & Andreeva, N. 1991 X-ray analyses of aspartic proteinases IV. Structure and refinement at 2·2 resolution of bovine chymosin. Journal of Molecular Biology 221 12951309Google ScholarPubMed
Plowman, J. E., Smith, M. H., Creamer, L. K., Liddell, M. J., Coddington, J. M., Gibson, J. J. & Engelbretsen, D. R. 1994 Proton assignment and structural features of a peptide from the chymosin-sensitive region of bovine κ-casein determined by 2D-NMR spectroscopy. Magnetic Resonance in Chemistry 32 458464CrossRefGoogle Scholar
Raap, J., Kerling, K. E. T., Vreeman, H. J. & Visser, S. 1983 Peptide substrates for chymosin (rennin): conformational studies of κ-casein and some κ-casein-related oligopeptides by circular dichroism and secondary structure prediction. Archives of Biochemistry & Biophysics 221 117124CrossRefGoogle ScholarPubMed
Ramachandran, G. N. & Sasisekharan, V. 1968 Conformation of polypeptides and proteins. Advances in Protein Chemistry 23 283437CrossRefGoogle ScholarPubMed
Rasmussen, K. T. & Foltmann, B. 1971 The C-terminal amino acid sequence of bovine pepsin. Acta Chemica, Scandinavica 25 38733874CrossRefGoogle ScholarPubMed
Schmid, F. X., Mayr, L. M., Mücke, M. & Schönbrunner, E. R. 1993 Prolyl isomerases: role in protein folding. Advances in Protein Chemistry 44 2566CrossRefGoogle ScholarPubMed
Sielecki, A. R., Fedorov, A. A., Boodhoo, A., Andreeva, N. S. & James, M. N. G. 1990 Molecular and crystal structures of monoclinic porcine pepsin refined at 1·8 resolution. Journal of Molecular Biology 214 143170CrossRefGoogle ScholarPubMed
Stein, R. L. 1993 Mechanism of enzymatic and nonenzymatic prolyl cis-trans isomerization. Advances in Protein Chemistry 44 124CrossRefGoogle ScholarPubMed
Suguna, K., Bott, R. R., Padlan, E. A., Subramanian, E., Sheriff, S., Cohen, G. H. & Davies, D. R. 1987 Structure and refinement at 1·8 resolution of the aspartic proteinase from Rhizopus chinensis. Journal of Molecular Biology 196 877900CrossRefGoogle ScholarPubMed
Suguna, K., Padlan, E. A., Bott, R., Boger, J., Pakris, K. D. & Davies, D. R. 1992 Structures of complexes of rhizopuspepsin with pepstatin and other statine-containing inhibitors. Proteins: Structure, Function and Genetics 13 195205CrossRefGoogle ScholarPubMed
Visser, S. 1981 Proteolytic enzymes and their action on milk proteins. A review. Netherlands Milk and Dairy Journal 35 6588Google Scholar
Visser, S., Slangen, C. J. & van Rooijen, P. J. 1987 Peptide substrates for chymosin (rennin). Interaction sites in κ-casein-related sequences located outside the (103–108)-hexapeptide region that fits into the enzyme's active-site cleft. Biochemical Journal 244 553558CrossRefGoogle ScholarPubMed
Visser, S., van Rooijen, P. J. & Slangen, C. J. 1980 Peptide substrates for chymosin (rennin). Isolation and substrate behaviour of two tryptic fragments of bovine κ casein. European Journal of Biochemistry 108 415421CrossRefGoogle ScholarPubMed