Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-10T13:35:13.578Z Has data issue: false hasContentIssue false

The structure of a bitter peptide derived from casein by digestion with papain

Published online by Cambridge University Press:  01 June 2009

K. Mary Clegg
Affiliation:
Department of Food Science and Nutrition, University of Strathclyde, 131 Albion Street, Glasgow, G1 1SD
C. L. Lim
Affiliation:
Department of Food Science and Nutrition, University of Strathclyde, 131 Albion Street, Glasgow, G1 1SD
W. Manson
Affiliation:
The Hannah Research Institute, Ayr, KA6 5HL

Summary

Treatment of unfractionated bovine casein with papain produced a digest which was bitter in taste. The bitterness was shown to be a property of a peptide originating only in β-casein and having an amino-acid composition consistent with its derivation from residues 53–79 inclusive of β-casein. The relationship existing between flavour and primary structure in this peptide is discussed briefly.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annan, W. D. & Manson, W. (1969). Journal of Dairy Research 36, 259.Google Scholar
Aschaffenburg, R. (1966). Journal of Dairy Science 49, 1284.CrossRefGoogle Scholar
Carr, J. W., Loughheed, T. C. & Baker, B. E. (1956). Journal of the Science of Food and Agriculture 7, 629.CrossRefGoogle Scholar
Clegg, K.M. (1971). Production of Pre-digested Protein Food. British Patent no. 1 338 936.Google Scholar
Grosclaude, F., Mahé, M. F., Mercier, J.-C. & Ribadeau-Dumas, B. (1972). European Journal of Biochemistry 26, 328.Google Scholar
Harwalkar, V. R. & Elliott, J. A. (1965). Journal of Dairy Science 48, 784.CrossRefGoogle Scholar
Kiddy, C. A., Peterson, R. F. & Kopfler, F. C. (1966). Journal of Dairy Science 49, 742.Google Scholar
Levy, A. L. (1954). Nature 174, 126.CrossRefGoogle Scholar
Manson, W. & Annan, W. D. (1971). Archives of Biochemistry and Biophysics 145,16.CrossRefGoogle Scholar
Manson, W. & Carolan, T. (1972). Journal of Dairy Research 39, 189.Google Scholar
Matoba, T., Hayashi, R. & Hata, T. (1970). Agricultural and Biological Chemistry 34, 1235.Google Scholar
Mercier, J.-C., Grosclaude, F. & Ribadeau-Dumas, B. (1971). European Journal of Biochemistry 23, 41.CrossRefGoogle Scholar
Mercier, J.-C., Ribadeau-Dumas, B. & Grosclaude, F. (1973). Netherlands Milk and Dairy Journal 27, 313.Google Scholar
Murray, T. K. & Baker, B. E. (1952). Journal of the Science of Food and Agriculture 3, 470.CrossRefGoogle Scholar
Ney, K. H. (1971). Zeitschrift für Lebensmitteluntersuchung und-Forschung 147, 64.Google Scholar
Petritschek, A., Lynen, F. & Belitz, H. D. (1972). Lebensmittel-Wissenschaft und Technologie 5, 47.Google Scholar
Ribadeau-Dumas, B., Brignon, G., Grosclaude, F. & Mercier, J.-C. (1972). European Journal of Biochemistry 25, 505.Google Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analytical Chemistry 30, 1190.Google Scholar
Sullivan, J. J. & Jago, G. R. (1972). Australian Journal of Dairy Technology 27, 98.Google Scholar