Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-07T22:52:11.140Z Has data issue: false hasContentIssue false

BAKER–AKHIEZER FUNCTION AS ITERATED RESIDUE AND SELBERG-TYPE INTEGRAL

Published online by Cambridge University Press:  01 February 2009

GIOVANNI FELDER
Affiliation:
Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland e-mail: giovanni.felder@math.ethz.ch
ALEXANDER P. VESELOV
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK and Landau Institute for Theoretical Physics, Moscow, Russia e-mail: A.P.Veselov@lboro.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A simple integral formula as an iterated residue is presented for the Baker–Akhiezer function related to An-type root system in both the rational and trigonometric cases. We present also a formula for the Baker–Akhiezer function as a Selberg-type integral and generalise it to the deformed An,1-case. These formulas can be interpreted as new cases of explicit evaluation of Selberg-type integrals.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2009

References

REFERENCES

1.Awata, H., Matsuo, Y., Odake, S. and Shiraishi, J., Excited states of the Calogero-Sutherland model and singular vectors of the W N algebra. Nuclear Phys. B 449 (1–2) (1995), 347374.CrossRefGoogle Scholar
2.Berest, Y., Huygens' principle and the bispectral problem, in The bispectral problem (Montreal, PQ, 1997), CRM Proc. Lecture Notes, 14 (American Mathematical Society, Providence, RI, 1998), 1130.CrossRefGoogle Scholar
3.Chalykh, O. A., Bispectrality for the quantum Ruijsenaars model and its integrable deformation. J. Math. Phys. 41 (8) (2000), 51395167.CrossRefGoogle Scholar
4.Chalykh, O. A., Feigin, M. V., and Veselov, A. P., Multidimensional Baker–Akhiezer functions and Huygens' principle. Comm. Math. Phys. 206 (3) (1999), 533566.CrossRefGoogle Scholar
5.Chalykh, O. A., Feigin, M. V. and Veselov, A. P., New integrable generalizations of Calogero–Moser quantum problem. J. Math. Phys. 39 (2) (1998), 695703.CrossRefGoogle Scholar
6.Chalykh, O. A. and Veselov, A. P., Commutative rings of partial differential operators and Lie algebras. Comm. Math. Phys. 126 (3) (1990), 597611.CrossRefGoogle Scholar
7.Etingof, P. and Ginzburg, V., On m-quasi-invariants of a Coxeter group. Mosc. Math. J. 2 (3) (2002), 555566.CrossRefGoogle Scholar
8.Feigin, M., Bispectrality for deformed Calogero–Moser–Sutherland systems. J. Nonlinear Math. Phys. 12 (2) (2005), 95136.CrossRefGoogle Scholar
9.Feigin, M. and Veselov, A. P., Quasi-invariants of Coxeter groups and m-harmonic polynomials. Int. Math. Res. Not. 10 (2002), 521545.CrossRefGoogle Scholar
10.Hallnas, M. and Langmann, E., Quantum Calogero-Sutherland type models and generalised classical polynomials. arXiv:math-ph/0703090.Google Scholar
11.Heckman, G., A remark on the Dunkl differential-difference operators, in Harmonic analysis on reductive groups (Brunswick, ME, 1989), Progr. Math., 101 (Birkhäuser Boston, Boston, MA, 1991), 181–191.CrossRefGoogle Scholar
12.Heckman, G. and Opdam, E., Root systems and hypergeometric functions. I, Comp. Math. 64 (1987), 329352.Google Scholar
13.Kazarnovski-Krol, A., Cycles for asymptotic solutions and the Weyl group, in The Gelfand Mathematical Seminars, 1993–1995 (Birkhäuser Boston, Boston, MA, 1996), 123150.CrossRefGoogle Scholar
14.Kazarnovski-Krol, A., Variation on a theme of Selberg integral. arXiv:q-alg/9611012.Google Scholar
15.Krichever, I. M., Methods of algebraic geometry in the theory of nonlinear equations. Uspekhi Mat. Nauk. 32 6 (1977) 183208.Google Scholar
16.Krivnov, V. Y. and Ovchinnikov, A. A., An exactly solvable one-dimensional problem with several particle species. Theor. Math. Phys. 50 (1982), 100103.CrossRefGoogle Scholar
17.Kuznetsov, V. B., Mangazeev, V. V. and Sklyanin, E. K., Q-operator and factorised separation chain for Jack polynomials. Indag. Mathem., N.S., 14 (3,4) (2003), 451482.CrossRefGoogle Scholar
18.Langmann, E., Singular eigenfunctions of Calogero-Sutherland type systems and how to transform them into regular ones. SIGMA 3 (2007), Paper 031, 18.Google Scholar
19.Macdonald, I. G., Symmetric functions and Hall polynomials, 2nd edition (Oxford University Press, New York, 1995).CrossRefGoogle Scholar
20.Okounkov, A. and Olshanski, G., Shifted Jack polynomials, binomial formula, and applications Math. Res. Letters 4 (1997), 6978.Google Scholar
21.Riemann, B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie, November 1859, in Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge (Riemann, B., Editor) (Springer-Verlag, Berlin; B. G. Teubner Verlagsgesellschaft, Leipzig, 1990).CrossRefGoogle Scholar
22.Ruijsenaars, S. N. M., Elliptic integrable systems of Calogero–Moser type: Some new results on joint eigenfunctions. In Proceedings of the 2004 Kyoto Workshop on Elliptic integrable systems (Noumi, M. and Takasaki, K., Editors) (Kobe University), 223–240. Available at www.math.kobe-u.ac.jp/publications/rlm18/18elliptic.html.Google Scholar
23.Sen, D., A multispecies Calogero–Sutherland model. Nuclear Phys. B 479 (3) (1996), 554574.CrossRefGoogle Scholar
24.Sergeev, A. N. and Veselov, A. P., BC Calogero–Moser operator and super Jacobi polynomials. arXiv: 0807.3858.Google Scholar
25.Sergeev, A. N. and Veselov, A. P., Deformed quantum Calogero–Moser systems and Lie superalgebras, Comm. Math. Phys. 245 (2004), 249278.CrossRefGoogle Scholar
26.Sergeev, A. N. and Veselov, A. P., Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials. Adv. Math. 192 (2) (2005), 341375.CrossRefGoogle Scholar
27.Stanley, R., Some combinatorial properties of Jack symmetric functions. Adv. Math. 77 (1) (1989), 76115.CrossRefGoogle Scholar
28.Varchenko, A. N., Selberg integrals. arXiv:math/0408308.Google Scholar
29.Veselov, A. P., Feigin, M. V. and Chalykh, O. A., New integrable deformations of quantum Calogero – Moser problem. Russian Math. Surveys 51 (3) (1996), 185186.CrossRefGoogle Scholar
30.Veselov, A. P., Styrkas, K. L., and Chalykh, O. A.Algebraic integrability for Schrödinger equation and finite reflection groups. Theor. Math. Phys. 94 (2) (1993), 253275.CrossRefGoogle Scholar