Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-27T03:30:19.798Z Has data issue: false hasContentIssue false

Evidence for a transmissible catabolic plasmid in Pseudomonas putida encoding the degradation of p-cresol via the protocatechuate ortho cleavage pathway

Published online by Cambridge University Press:  14 April 2009

L. Hewetson
Affiliation:
School of Biological Technology, University of New South Wales, Kensington, New South Wales, Australia
H. M. Dunn
Affiliation:
School of Biological Technology, University of New South Wales, Kensington, New South Wales, Australia
N. W. Dunn
Affiliation:
School of Biological Technology, University of New South Wales, Kensington, New South Wales, Australia

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evidence is presented that a strain of Pseudomonas putida harbours a catabolic plasmid which encodes for the degradation of p-cresol through the protocatechuate ortho cleavage pathway. This plasmid can transfer giving approximately 10−3 transconjugants per donor cell, can be cured with mitomycin C, belongs to the P-9 plasmid incompatibility group and can be transduced with the bacteriophage pf16.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Austen, R. A. & Dunn, N. W. (1977). A comparative study of the NAH and TOL catabolic plasmids in Pseudomonas putida. Australian Journal of Biological Sciences 30, 357366.CrossRefGoogle ScholarPubMed
Chakrabarty, A. M. (1972). Genetic basis of the biodegradation of salicylate in Pseudomonas. Journal of Bacteriology 112, 815823.CrossRefGoogle ScholarPubMed
Chapman, P. J. & Hopper, D. J. (1968). The bacterial metabolism of 2,4-xylenol. Biochemical Journal 110, 491498.CrossRefGoogle ScholarPubMed
Chapman, P. J. (1972). An outline of reaction sequences used for the bacterial degradation of phenolic compounds. In Degradation of Synthetic Organic Molecules in the Biosphere, pp. 1755. Proceedings of a Conference in San Francisco,12–13 June 1971.National Academy of Sciences of the U.S.A.Google Scholar
Dagley, S. (1975). A biochemical approach to some problems of environmental pollution. Essays in Biochemistry 11, 81138.Google ScholarPubMed
Dunn, N. W. & Gunsalus, I. C. (1973). Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. Journal of Bacteriology 114, 974979.CrossRefGoogle ScholarPubMed
Fargie, B. & Holloway, B. W. (1965). Absence of clustering of functionally related genes in Pseudomonas aeruginosa. Genetical Research, Cambridge 6, 284299.CrossRefGoogle ScholarPubMed
Gibson, D. T. (1971). Assay of enzymes of aromatic metabolism. Methods in Microbiology 6A, 463478.CrossRefGoogle Scholar
Haas, D. & Holloway, B. W. (1976). R-Factor variants with encoded sex factor activity in Pseudomonas aeruginosa. Molecular & General Genetics 144, 243251.CrossRefGoogle Scholar
Hopper, D. J. (1976). The hydroxylation of p-cresol and its conversion p-hydroxybenzal dehyde in Pseudomonas putida. Biochemical and Biophysical Research Communications 69, 462468.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Ornston, L. N. (1966). The conversion of catechol and protocatechuate to B-ketoadipate by Pseudomonas putida. Journal of Biological Chemistry 241, 38003810.CrossRefGoogle ScholarPubMed
Rheinwald, J. G., Chakrabarty, A. M. & Gunsalus, I. C. (1973). A transmissible plasmid controlling camphor degradation in Pseudomonas putida. Proceedings of the National Academy of Sciences, U.S.A. 70, 885889.CrossRefGoogle ScholarPubMed
Stanter, R. Y., Palleroni, N. J. & Doudoroff, M. (1966). The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43, 160271.Google Scholar
White, G. P. & Dunn, N. W. (1977). Evidence for transductional shortening of the plasmid obtained by recombination between the TOL catabolic plasmid and the R91 R plasmid. Genetical Research, Cambridge 31, 9396.CrossRefGoogle Scholar
White, G. P. & Dunn, N. W. (1978). Compatibility and sex specific phage plating characteristics of the TOL and NAH catabolic plasmids. Genetical Research, Cambridge 32, 207213.CrossRefGoogle ScholarPubMed
Wigmore, G. J., Bayly, R. C. & Di Berardino, D. (1974). Pseudomonas putida mutants defective in the metabolism of the products of meta fission of catechol and its methyl analogues. Journal of Bacteriology 120, 3137.CrossRefGoogle Scholar
Williams, P. A. & Murray, K. (1974). Metabolism of benzoate and the methyl benzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of the TOL plasmid. Journal of Bacteriology 120, 416423.CrossRefGoogle Scholar
Williams, P. A. & Worsey, M. J. (1976). Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. Journal of Bacteriology 125, 818830.CrossRefGoogle ScholarPubMed
Wong, C. L. & Dunn, N. W. (1974). Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2. Genetical Research, Cambridge 23, 227232.CrossRefGoogle ScholarPubMed
Wong, C. L. & Dunn, N. W. (1976). Combined chromosomal and plasmid encoded control for the degradation of phenol in Pseudomonas putida. Genetical Research, Cambridge 27, 405412.CrossRefGoogle ScholarPubMed