Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-17T06:11:39.306Z Has data issue: false hasContentIssue false

2 - Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America

Published online by Cambridge University Press:  05 June 2012

Alan J. M. Baker
Affiliation:
School of Botany, University of Melbourne, Australia
Wilfried H. O. Ernst
Affiliation:
Institute of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands
Antony van der Ent
Affiliation:
B-WARE Research Centre, Radboud Universiteit, Nijmegen, The Netherlands
François Malaisse
Affiliation:
Laboratoire d'Ecologie, Faculté Universitaire des Sciences Agronomiques de Gemblaux, Belgium
Rosanna Ginocchio
Affiliation:
Centro de Investigación Minera y Metalúrgica (CIMM), Chile
Lesley C. Batty
Affiliation:
University of Birmingham
Kevin B. Hallberg
Affiliation:
University of Wales, Bangor
Get access

Summary

Introduction

Metalliferous soils provide very restrictive habitats for plants due to phytotoxicity, resulting in severe selection pressures. Species comprising heavy-metal plant communities are genetically altered ecotypes with specific tolerances to, e.g., cadmium, copper, lead, nickel, zinc and arsenic, adapted through microevolutionary processes. Evolution of metal tolerance takes place at each specific site (Ernst 2006). A high degree of metal tolerance depends on the bioavailable fraction of the metal(loids) in the soil and the type of mineralization. At extremely high soil metal concentrations, especially on polymetallic soils, even metal-tolerant genotypes are not able to evolve extreme tolerances to several heavy metals simultaneously. Adapted genotypes are the result of the Darwinian natural selection of metal-tolerant individuals selected from surrounding non-metalliferous populations (Antonovics et al. 1971; Baker 1987; Ernst 2006). Such selection can lead ultimately to speciation and the evolution of endemic taxa. Heavy-metal tolerance was first reported by Prat (1934) in Silene dioica and demonstrated experimentally in grasses by Bradshaw and co-workers in Agrostis spp. and by Wilkins in Festuca ovina in the late 1950s and 1960s (see Antonovics et al. 1971) and from the early 1950s onwards in the herb Silene vulgaris by Baumeister and co-workers (see Ernst 1974). Metal-tolerant plants avoid intoxication by an excess of heavy metals by means of special cellular mechanisms, as long as the soil metal levels do not exceed the levels of metal tolerance (Ernst 1974; Ernst et al. 2004). They can thus thrive on soils that are too toxic for non-adapted species and ecotypes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonovics, J., Bradshaw, A. D. and Turner, R. G. (1971) Heavy metal tolerance in plants. Advances in Ecological Research 7, 1–85.CrossRefGoogle Scholar
Aronow, L. and Kerdel-Vegas, F. (1965) Seleno-cystathionine, a pharmacologically active factor in the seeds of Lecythis ollaria. Nature 205, 1185–1186.CrossRefGoogle Scholar
Arroyo, M. T. K. and Cavieres, L. (1997) The Mediterranean-type climate flora of central Chile. What do we know and how we can assure its protection. Noticiero de Biología 5, 48–55.Google Scholar
Assunção, A. G. L., Da Costa Martins, P., Folter, S., Vooijs, R., Schat, H. and Aarts, M. G. M. (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment 24, 217–226.CrossRefGoogle Scholar
Baker, A. J. M. (1987) Metal tolerance. New Phytologist. 106 (Suppl.), 93–111.CrossRefGoogle Scholar
Baker, A. J. M. and Brooks, R. R. (1988) Botanical exploration for minerals in the humid tropics. Journal of Biogeography. 15, 221–229.CrossRefGoogle Scholar
Baker, A. J. M. and Brooks, R. R. (1989) Terrestrial higher plants that hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.Google Scholar
Baker, A. J. M. and Proctor, J. (1990) The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Systematics and Evolution 173, 91–108.CrossRefGoogle Scholar
Baker, A. J. M. and Whiting, S. N. (2008) Metallophytes – a unique biodiversity and biotechnological resource in the care of the minerals industry. In: Proceedings of the Third International Seminar on Mine Closure, 14–17 October 2008, Johannesburg, South Africa. (eds. Fourie, A., Tibbett, M., Weiersbye, I. and Dye, P.), pp. 13–20. Australian Centre for Geomechanics, Nedlands, Western Australia.Google Scholar
Baker, A. J. M., Brooks, R. R., Pease, A. J. and Malaisse, F. (1983) Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaïre. Plant and Soil 73, 377–385.CrossRefGoogle Scholar
Baker, A. J. M., McGrath, S. P., Reeves, R. D. and Smith, J. A. C. (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Phytoremediation of Contaminated Soil and Water (eds. Terry, N. and Bañuelos, G. S.), pp. 85–107. Lewis/CRC Press Inc, Boca Raton.Google Scholar
Barnatt, J. and Penny, R. (2004) The Lead Legacy. The Prospects for the Peak District's Lead Mining Heritage. Peak District National Park Authority; Buxton, UK.Google Scholar
Batty, L. C. (2005) The potential importance of mine sites for biodiversity. Mine Water and the Environment 24, 101–103.CrossRefGoogle Scholar
Baumbach, H. (2005) Genetic differentiation of Central European heavy metal ecotypes of Silene vulgaris, Minuartia verna and Armeria maritima in consideration of biogeographical, mining historical and physiological aspects (in German).Dissertationes Botanicae 398, 1–128.Google Scholar
Baumbach, H. and Hellwig, F. H. (2007) Genetic differentiation of metallicolous and non-metallicolous Armeria maritima (Mill.) Willd. taxa (Plumbaginaceae) in Central Europe. Plant Systematics and Evolution 269, 245–258.CrossRefGoogle Scholar
Baumbach, H. and Schubert, R. (2008) New taxonomic perception of the characteristic species of the heavy metal vegetation and possible consequences for nature conservation of metal-enriched sites (in German). Feddes Repertorium 119, 543–555.CrossRefGoogle Scholar
Baumbach, H., Volkmann, H. K. M. and Wolkersdorfer, C. (2007) Heavy metal vegetation on smelter dust at the Weinberg near Hettstedt-Burgörner (Mansfelder Region). Results of centuries of emission and a demand for nature conservation (in German). Hercynia N. F. 14, 87–109.Google Scholar
Bech, J., Poschenrieder, C., Llugany, M.et al. (1997) Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. The Science of the Total Environment 203, 83–91.CrossRefGoogle Scholar
Bech, J., Poschenrieder, C., Barceló, J. and Lansac, A. (2001) Heavy metal and arsenic accumulation in selected plants species around a silver mine in Ecuador. Proceedings of the 6th International Conference on the Biogeochemistry of Trace Elements (ICOBTE), Guelph, Canada. p. 393.Google Scholar
Bech, J., Poschenrieder, C., Barceló, J. and Lansac, A. (2002) Plants from mine spoils in the South American area as potential sources of germplasm for phytoremediation technologies. Acta Biotechnologica 22, 5–11.3.0.CO;2-B>CrossRefGoogle Scholar
Becker, T., Brändel, M. and Dierschke, H. (2007) Dry grassland on heavy metal-enriched and non-metal-enriched soils of the Bottendorf hills in Thuringia (in German). Tuexenia 27, 255–285.Google Scholar
Bert, V., Macnair, M. R., Laguerie, F., Saumitou-Laprade, P. and Petit, D. (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist 146, 225–233.CrossRefGoogle Scholar
Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W. and Verbruggen, N. (2003) Genetic basis of Cd tolerance and hyperaccumulation inArabidopsis halleri. Plant and Soil 249, 9–18.CrossRefGoogle Scholar
Bizoux, J. P. and Mahy, G. (2007) Within-population genetic structure and clonal diversity of a threatended endemic metallophyte, Viola calaminaria (Violaceae). American Journal of Botany 94, 887–895.CrossRefGoogle Scholar
Bizoux, J. P., Brevers, F., Meerts, P., Graitson, E. and Mahy, G. (2004) Ecology and conservation of Belgian populations of Viola calaminaria, a metallophyte with a restricted geographical distribution. Belgian Journal of Botany 137, 91–104.Google Scholar
Bleeker, P. M., Hakvoort, H. W. J., Bliek, M., Souer, E. and Schat, H. (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant Journal 45, 917–929.CrossRefGoogle ScholarPubMed
Bonaventura, S. M., Tecchi, R. and Vignata, D. (1995) The vegetation of the Puna Belt at laguna de Pozuelos Biosphere Reserve in northwest Argentina. Plant Ecology 119, 23–31.Google Scholar
Boyd, R. S. and Martens, S. N. (1994) Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70, 21–25.CrossRefGoogle Scholar
Brej, T. (1998) Heavy metal tolerance in Agropyron repens (L.) P. Beauv. populations from the Legnica copper smelter area, Lower Silesia. Acta Societatis Botanicorum Poloniae 67, 325–333.CrossRefGoogle Scholar
Bröker, W. (1963) Genetic-physiological investigations of zinc tolerance in Silene inflata Sm. (in German). Flora 153, 122–156.Google Scholar
Brooks, R. R. (1998) Geobotany and hyperaccumulators. In: Plants that Hyperaccumulate Heavy Metals: their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining (ed. Brooks, R. R.), pp. 55–94. CAB International, Oxon, UK.Google Scholar
Brooks, R. R. and Crooks, R. R. (1979) Studies on the uptake of heavy metals by the Scandinavian ‘kisplanten’ Lychnis alpina and Silene dioica. Plant and Soil 54, 491–496.CrossRefGoogle Scholar
Brooks, R. R., Baker, A. J. M. and Malaisse, F. (1992a) Copper flowers. National Geographic Research and Exploration 8, 338–351.Google Scholar
Brooks, R. R., Malaisse, F. and Empain, A. (1985) The Heavy Metal-tolerant Flora of Southcentral Africa. A Multidisciplinary Approach. A. A. Balkema, Rotterdam.Google Scholar
Brooks, R. R., Naidu, S. M., Malaisse, F. and Lee, J. (1987) The elemental content of metallophytes from the copper/cobalt deposits of Central Africa. Bulletin de la Société Royale de Botanique de Belgique 119, 179–191.Google Scholar
Brooks, R. R., Reeves, R. D. and Baker, A. J. M. (1992b) The serpentine vegetation of the Goiás State, Brazil. In: The Vegetation of Ultramafic (Serpentine) Soils (eds. Baker, A. J. M., Proctor, J. and Reeves, R. D.), pp. 67–81.Intercept Ltd, Andover, UK.Google Scholar
Brooks, R. R., Reeves, R. D., Baker, A. J. M., Rizzo, J. A. and Díaz-Ferreira, H. (1990) The Brazilian serpentine plant expedition (BRASPEX), 1988. National Geographic Research 6, 205–219.Google Scholar
Brown, G. (2001) The heavy-metal vegetation of north-western mainland Europe. Botanische Jahrbücher für Systematik 123, 63–110.Google Scholar
Chaney, R. L., Li, Y. M., Brown, S. L.et al. (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems; approaches and progress. In: Phytoremediation of Contaminated Soils and Water (eds. Terry, N. and Bañuelos, G. S.), pp. 131–160. CRC Press, Boca Raton.Google Scholar
Chardonnens, A. N., Ten Bookum, W. M., Vellinga, S., Schat, H., Verkleij, J. A. C. and Ernst, W. H. O. (1999) Allocation patterns of zinc and cadmium in heavy metal tolerant and sensistiveSilene vulgaris. Journal of Plant Physiology 155, 778–787.CrossRefGoogle Scholar
Choo, F., Paton, A. and Brooks, R. R. (1996) A re-evaluation of Haumaniastrum species as geobotanical indicators of copper and cobalt. Journal of Geochemical Exploration 56, 37–45.Google Scholar
Cincotta, R. P., Wisnewski, J. and Engelman, R. (2000) Human population in the biodiversity hotspots. Nature 404, 990–992.CrossRefGoogle ScholarPubMed
Clemens, S. (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475–486.CrossRefGoogle ScholarPubMed
Clemens, S., Palmgren, M. G. and Krämer, U. (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends in Plants Science 7, 309–317.CrossRefGoogle ScholarPubMed
Corley, M. F. V. and Perry, A. R. (1985) Scopelophila cataractae (Mitt.) Broth. in South Wales, new to Europe. Journal of Bryology 13, 323–328.CrossRefGoogle Scholar
Dahmani-Müller, H., Oort, E., Gélic, B. and Balabane, M. (2000) Strategies of heavy metal uptake by three plant species growing near a smelter site. Environmental Pollution 109, 231–238.CrossRefGoogle Scholar
Davies, B. E. and Roberts, L. J. (1978) The distribution of heavy metal contaminated soils in north-east Clwyd, Wales. Water, Air and Soil Pollution 9, 507–518.Google Scholar
Deng, D. M., Shu, W. S., Zhang, J.et al. (2007) Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environmental Pollution 147, 381–386.CrossRefGoogle ScholarPubMed
Plaen, G., Malaisse, F. and Brooks, R. R. (1982) The copper flowers of Central Africa and their significance for prospecting and archaeology. Endeavour, NS 6, 72–77.CrossRefGoogle Scholar
Dierschke, H. and Becker, T. (2008) The heavy metal vegetation in the Harz – arrangement, ecological conditions, and syntaxonomic classification (in German). Tuexenia 28, 185–227.Google Scholar
Dudley, T. R. (1986) A new nickelophilous species of Alyssum (Cruciferae) from Portugal, Alyssum pintodasilvae. Feddes Repertorium 97, 139–142.Google Scholar
Dueck, T. A., Ernst, W. H. O., Faber, J. and Pasman, F. (1984) Heavy metal emission and genetic constitution of plant populations in the vicinity of two metal emission sources. Angewandte Botanik 58, 47–59.Google Scholar
Duvigneaud, P. (1958) The vegetation of Katanga and its metalliferous soils (in French). Bulletin de la Société Royale de Botanique de Belgique 90, 127–286.Google Scholar
Duvigneaud, P. (1959) Cobaltophytes in Upper Katanga (in French). Bulletin de la Société Royale de Botanique de Belgique 91, 111–134.Google Scholar
Duvigneaud, P. and Denaeyer-De Smet, S. (1963) Copper and the vegetation of Katanga (in French). Bulletin de la Société Royale de Botanique de Belgique 96, 92–231.Google Scholar
Ernst, W. H. O. (1964) Ecological and phytosociological investigations of heavy metal plant communities in Central Europe and the Alpine Mountains (in German). Unpublished PhD Thesis, Westfälische Wilhelms-Universität Münster, Germany.
Ernst, W. H. O (1972) Ecophysiological studies on heavy metal plants in South Central Africa. Kirkia 8, 125–145.Google Scholar
Ernst, W. H. O. (1974) Heavy Metal Vegetation of the World (in German). Geobotanica Selecta, Band V. Gustav Fischer Verlag, Stuttgart.Google Scholar
Ernst, W. H. O (1976) Violetea calaminariae. In: Prodomus of the European Plant Communities Vol. 3 (ed. Tüxen, R.), pp. 1–132. J. Cramer, Vaduz.Google Scholar
Ernst, W. H. O. (1978) Ecological borderline between Violetum calaminariae and Gentiano-Koelerietum (in German). Berichte der Deutschen Botanischen Gesellschaft 89, 381–390.Google Scholar
Ernst, W. H. O. (1987) Population differentiation in grassland vegetation. In: Disturbance in Grasslands (eds. Andel, J., Bakker, J. and Snaydon, R. W.), pp. 213–236. Junk Publishers, Dordrecht.CrossRefGoogle Scholar
Ernst, W. H. O. (1990) Mine vegetation in Europe. In: Heavy Metal Tolerance in Plants: Evolutionary Aspects (ed. Shaw, A. J.), pp. 21–37. CRC Press, Boca Raton.Google Scholar
Ernst, W. H. O. (2000) Evolution of metal hyperaccumulation and the phytoremediation hype. New Phytologist 146, 357–358.CrossRefGoogle Scholar
Ernst, W. H. O. (2006) Evolution of metal tolerance in higher plants. Forest, Snow Landscape Research 80, 251–274.Google Scholar
Ernst, W. H. O. and Nelissen, H. J. M. (2000) Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic soils. Environmental Pollution 107, 329–338.CrossRefGoogle ScholarPubMed
Ernst, W. H. O., Knolle, F., Kratz, S. and Schnug, E. (2004) Aspects of ecotoxicology of heavy metals in the Harz region – a guided excursion. Landbauforschung Völkenrode 54, 53–71.Google Scholar
Ernst, W. H. O., Krauss, G. J., Verkleij, J. A. C. and Wesenberg, D. (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant, Cell and Environment 31, 123–143.Google ScholarPubMed
Ernst, W. H. O., Verkleij, J. A. C. and Schat, H. (1992) Metal tolerance in plants. Acta Botanica Neerlandica 41, 229–248.CrossRefGoogle Scholar
,European Convention on the Protection of the Archaeological Heritage (Revised) Valetta, 16.I. 1992, Council of Europe.
,EU Habitats Directive Annex I (Fauna-Flora-Habitat), 1992, European Union.
EUNIS (European Environment Agency) database website at: http://eunis.eea.europa.eu/habitats-factsheet.jsp?tab=0&idHabitat=10113.
Fernández-Turiel, J. L., Rossi, J. N., Aceñolaza, P.et al. (1994) Environmental issues of biogeochemical studies at the Famantina range, La Rioja, Argentina (in Spanish). Proceedings 7° Congreso Geológico Chileno, Concepción, Chile. pp. 613–617.Google Scholar
Ginocchio, R. (1997) Applicability of time-spatial vegetation distribution models to terrestrial polluted ecosystems (in Spanish). Unpublished PhD Thesis, P. Universidad Católica de Chile, Santiago, Chile.Google Scholar
Ginocchio, R. (1999) Copper tolerance testing on plant species growing near a copper smelter in central Chile. Proceedings of the 5th International Conference on the Biogeochemistry of Trace Elements (ICOBTE), Vienna, Austria. pp. 1156–1157.Google Scholar
Ginocchio, R. (2000) Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile. Chemosphere 41, 15–23.CrossRefGoogle ScholarPubMed
Ginocchio, R. and Baker, A. J. M. (2004) Metallophytes in Latin America: a remarkable biological genetic resource scarcely known and studied in the region. Revista Chilena de Historia Natural 77, 185–194.CrossRefGoogle Scholar
Ginocchio, R., Toro, I., Schnepf, D. and Macnair, M. R. (2002) Copper tolerance in populations of Mimulus luteus var. variegatus exposed and non-exposed to copper pollution. Geochemistry: Exploration, Environment, Analysis 2, 151–156.Google Scholar
Ginocchio, R., Santibáñez, C., León-Lobos, P., Brown, S. and Baker, A. J. M. (2007) Sustainable rehabilitation of copper mine tailings in Chile through phytostabilization: more than plants. Proceedings of the 2nd International Conference Mine Closure 2007, Santiago, Chile.Google Scholar
Graitson, E., Melin, E. and Goffin, M. (2003) Listing and characterisation of calaminarian sites in the Walloon region (in French). Société Publique d'Aide à la Qualité de l'Environnement G.I.R.E.A.: Université de Liège.Google Scholar
Griffioen, W. A. J., Ietswaart, J. H. and Ernst, W. H. O. (1994) Mycorrhizal infection of Agrostis capillaris on a copper-contaminated soil. Plant and Soil 158, 83–89.CrossRefGoogle Scholar
Hammond, J. P., Bowen, H. C., White, J. P.et al. (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytologist 170, 239–260.CrossRefGoogle ScholarPubMed
Hanikenne, M., Talke, I. N., Haydon, M. J.et al. (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391–395.CrossRefGoogle ScholarPubMed
Hildebrandt, U., Hoef-Emden, K., Backhausen, S.et al. (2006) The rare, endemic zinc violets of Central Europe originate from Viola lutea Huds. Plant Systematics and Evolution 257, 205–222.CrossRefGoogle Scholar
Hildebrandt, U., Kaldorf, M. and Bothe, H. (1999) The zinc violet and its colonisation by arbuscular mycorrhizal fungi. Journal of Plant Physiology 154, 709–717.CrossRefGoogle Scholar
Huitson, S. B. and Macnair, M. R. (2003) Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails?New Phytologist 159, 453–459.CrossRefGoogle Scholar
,International Council on Mining and Metals (ICMM). (2006) Good Practice Guidance for Mining and Biodiversity. ICMM, London. 142 p.
,International Institute for Environment and Development (IEED) and World Business Council for Sustainable Development (WBCSD). (2002) Breaking New Ground: Mining, Minerals and Sustainable Development (Report of the MMSD Project). Earthscan, London. 441 pp.
,Joint Nature Conservation Committee (JNCC). (2002) Habitat account – natural and semi-natural grassland formation. 6130 Calaminarian grasslands of the Violetalia calaminariae. http//www.jncc.gov.uk/ProtectedSites/SACselection/habitat.
Johnson, M. S. (1978) Land reclamation and the botanical significance of some former mining and manufacturing sites in Britain. Environmental Conservation 5, 223–228.CrossRefGoogle Scholar
Kakes, P. (1980) Genecological Investigations on Zinc Plants. Unpublished PhD Thesis, Universiteit van Amsterdam, Amsterdam.Google Scholar
Ke, W., Xiong, Z. T., Chen, S. and Chen, J. (2007) Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field site. Environmental and Experimental Botany 59, 59–67.CrossRefGoogle Scholar
Keulartz, J. (2005) Operating at the Borderline. A Pragmatic View on Nature and Environment (in Dutch). Damon, Budel, the Netherlands.Google Scholar
Klein, M. and Niemann, H. (2007) After the flood comes mud removal. Hannoversche Allgemeine Zeitung, 24 August 2007.Google Scholar
Koch, M., Mummenhoff, K. and Hurka, H. (1998) Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe – evidence from genetic studies based on isozyme analysis. Biochemical Systematics and Ecology 26, 823–828.CrossRefGoogle Scholar
Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M. and Smith, J. A. C. (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379, 635–638.CrossRefGoogle Scholar
Kurris, F. and Pagnier, J. (1925) Botanical-chemical investigation of the zinc vegetation at Epen (in Dutch). Natuurhistorisch Maandblad 14, 86–89.Google Scholar
Lambinon, J. and Auquier, P. (1963) Flora and vegetation of calaminarian soils in the northern Walloon region and the western Rhineland. Chorological types and ecological groups (in French). Natura Mosana 16, 113–130.Google Scholar
Lenders, H. J. R., Leuven, R. S. E. W., Nienhuis, P. H. and Schoof, D. J. W. (1997) Nature Management and Development (in Dutch). Boom, Meppel.Google Scholar
Leteinturier, B. (2002) Evaluation of the phytocenotic potential of the Southern-central African copper outcrops with a view to phytoremediation of sites polluted by mining activity (in French). Unpublished PhD Thesis, Agricultural University Gembloux, Belgium.Google Scholar
Leteinturier, B. and Malaisse, F. (2002) On the tracks of botanical collectors on copper outcrops of South Central Africa (in French). Systematics and Geography of Plants 71, 133–163.CrossRefGoogle Scholar
Leteinturier, B., Baker, A. J. M. and Malaisse, F. (1999) Early stages of natural revegetation of metalliferous mine workings in South Central Africa: a preliminary survey. Biotechnologie, Agronomie, Société et Environment 3, 28–41.Google Scholar
Libbert, W. (1930) The vegetation of the Fallstein region (in German). Beihefte zu den Jahresberichten der Naturhistorischen Gesellschaft zu Hannover 2, 1–66.Google Scholar
Lombi, E., Tearall, K. L., Howarth, J. R., Zhao, F. J., Hawkesford, M. J. and McGrath, S. P. (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulatorThlaspi caerulescens. Plant Physiology 128, 1359–1367.CrossRefGoogle ScholarPubMed
Lou, L. Q., Shen, Z. G. and Li, X. D. (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environmental and Experimental Botany 51, 111–120.CrossRefGoogle Scholar
Macklin, M. G. and Smith, R. S. (1990) Historic riparian vegetation development and alluvial metallophyte plant communities in the Tyne Basin, North-east England. In: Vegetation and Erosion (ed. Thornes, J. B.), pp. 239–256. John Wiley & Sons, Chichester, UK.Google Scholar
Macnair, M. R. and Cumbes, Q. (1987) Evidence that arsenic tolerance in Holcus lanatus L. is caused by an altered phosphate uptake system. New Phytologist 107, 387–394.CrossRefGoogle Scholar
Macnair, M. R., Smith, S. E. and Cumbes, Q. J. (1993) The heritability and distribution of variation in degree of copper tolerance in Mimulus guttatus at Copperopolis, California. Heredity 71, 445–455.CrossRefGoogle Scholar
,MAGS (1975) Environmental problems caused by heavy metals in the region of Stolberg (in German). Ministerium für Arbeits, Gesundheit und Soziales des Landes Nordrhein-Westfalen, Düsseldorf.
Malaisse, F. and Bamps, P. (2005) Basanthe kisimbae (Passifloracerae), a new species in Congo-Kinshasa. Systematics and Geography of Plants 75, 263–265.Google Scholar
Malaisse, F., Baker, A. J. M. and Ruelle, S. (1999) Diversity of plant communities and leaf heavy metal content at Luiswishi copper/cobalt mineralization, Upper Katanga, Dem. Rep. Congo. Biotechnologie, Agronomie, Société et Environnement 3, 104–114.Google Scholar
Malaisse, F., Colonval-Elenkov, E. and Brooks, R. R. (1983) Studies on copper and cobalt tolerance in three closely-related taxa within the genus Silene L. (Caryophyllaceae) from Zaïre. Plant Systematics and Evolution 142, 207–221.CrossRefGoogle Scholar
Mengoni, A., Gonnelli, C., Hakvoort, H. W. J.et al. (2003) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant and Soil 257, 451–457.CrossRefGoogle Scholar
Myers, N. R. A., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. and Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.CrossRefGoogle ScholarPubMed
Nordal, I., Haraldson, K. B., Ergon, A. and Eriksen, A. (1999) Copper resistance and genetic diversity in Lychnis alpina (Caryophyllaceae) populations on mining sites. Folia Geobotanica 34, 471–481.CrossRefGoogle Scholar
Noret, N., Meerts, P., Vanhaelen, M., Dos Santos, A. and Escarré, J. (2007) Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oikos 152, 92–100.Google ScholarPubMed
Olivieri, I. and Vitalis, R. (2001) Biology of extinctions (in French). Médecines Science 17, 63–69.CrossRefGoogle Scholar
Pardey, A. (2002) Nature conservation of heavy metal sites. A survey of the present situation in Germany, Belgium and the Netherlands (in German). Naturschutz und Landschaftsplanung 34, 145–151.Google Scholar
Pardey, A., Kalkkuhl, R., Heibel, E. and Haese, U. (1999) Concept for the conservation of heavy metal vegetation (in German). Landesanstalt für Ökologie, Bodenordnung und Forsten/Landesamt fur Agrarordnung Nordrhein-Westfalen. LÖBF Schriftenreihe 16, 1–272.Google Scholar
Pawlowska, T. E., Blaszkowski, J. and Rühling, A. (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6, 499–505.CrossRefGoogle Scholar
Pollard, A. J. and Baker, A. J. M. (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytologist 135, 655–658.CrossRefGoogle Scholar
Prat, S. (1934) The heredity of copper resistance (in German). Berichte der DeutschenBotanischen Gesellschaft 52, 65–67.Google Scholar
Punz, W. and Mucina, L. (1997) Vegetation on anthropogenic metalliferous soils in the Eastern Alps. Folia Geobotanica 32, 283–295.CrossRefGoogle Scholar
Raskin, R. (2003) Can heavy metal vegetation be restored? (in German). Mitteilungen der Landesanstalt für Ökologie, Bodenordnung und Forsten 3, 18–21.Google Scholar
Reeves, R. D. and Baker, A. J. M. (2000) Metal-accumulating plants. In: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment (eds. , I.Raskin, and Ensley, B. D.), pp. 193–229. John Wiley & Sons, New York.Google Scholar
Regvar, M., Vogel, K., Irgel, N.et al. (2003) Colonisation of pennycress (Thlaspi sp.) of the Brassicaceae by arbuscular mycorrhizal fungi. Journal of Plant Physiology 160, 615–626.CrossRefGoogle Scholar
Robyns, W. (1932) Plant growth and flora on the copper-enriched soils in Upper Katanga (in Dutch). Natuurwetenschappelijk Tijdschrift 14, 101–107.Google Scholar
Robyns, A. (1995) Passifloraceae. Flora of Central Africa (Zaïre, Rwanda, Burundi) Spermatophyta (in French). Jardin Botanique national de Belgique, Meise, Belgium. 75 pp.Google Scholar
Rodwell, J. S., Morgan, V., Jefferies, R. G. and Moss, D. (2007) The European Context of the British Lowland Grassland. JNCC No. 349, Chapter 7. Metallophyte Vegetation. Joint Nature Conservation Committee, Peterborough, UK.Google Scholar
Ruelle, S. (1995) A study of metal pollution at the Paposo site (II Region, Chile) (in French). Travail de Fin d'Etudes ‘Ingénieur Agronome, Faculté Universitaire des Sciences Agronomiques de Gembloux, Belgium.Google Scholar
Schat, H., Sharma, S. S. and Vooijs, R. (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum 101, 477–482.CrossRefGoogle Scholar
Schat, H., Vooijs, R. and Kuiper, E. (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50, 1888–1895.CrossRefGoogle ScholarPubMed
Schubert, R. (1953) The heavy metal plant communities in the eastern Harz foreland (in German). Wisssenschaftliche Zeitschrift der Martin-Luther-Unversität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe 3, 51–70.Google Scholar
Schubert, R. (1954) The heavy metal vegetation of the Bottendorf hills (in German). Wisssenschaftliche Zeitschrift der Martin-Luther-Unversität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe 4, 99–120.Google Scholar
Schulz, A. (1912) On the phanerogams growing on heavy metal enriched soils in Germany (in German). Jahresberichte des Westfälischen Provincialvereins für Wissenschaft und Kunst 40, 209–227.Google Scholar
Schwickerath, M. (1931) Violetum calaminariae of the zinc soils in the vicinity of Aachen. A plant phytosociological study (in German). Beiträge zur Denkmalspflege 14, 463–503.Google Scholar
Sebald, O. (1988) The genus Becium Lindley (Lamiaceae) in Africa and on the Arabian Peninsula (Part 1). Stuttgarter Beiträge zur Naturkunde, Serie A (Biologie) 419, 1–74.Google Scholar
,SERNAGEOMIN (1989) Survey of tailings storage facilities in Chile, Stage A, Regions V and XIII (in Spanish). Servicio Nacional de Geología y Minería, Santiago, Chile.
,SERNAGEOMIN (1990) Survey of tailings storage facilities in Chile, Stage B, Regions IV, V, and VII (in Spanish). Servicio Nacional de Geología y Minería, Santiago, Chile.
Shewry, P. R., Woolhouse, H. W. and Thompson, K. (1979) Relationships of vegetation to copper and cobalt in the copper clearings of Haut-Shaba, Zaire. Botanical Journal of the Linnean Society 79, 1–35.CrossRefGoogle Scholar
Simon, E. (1978) Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas. New Phytologist 81, 175–188.CrossRefGoogle Scholar
Smith, R. F. (1979) The occurrence and need for conservation of metallophytes on mine wastes in Europe. Minerals and the Environment 1, 131–147.CrossRefGoogle Scholar
Sotiaux, A., Zuttere, P h., Schumacker, R., Pierrot, R. B. and Ulrich, C. (1987) Scopelophila cataractae (Mitt.) Broth. (Pottiaceae, Musci), new for continental Europe in France, Belgium, The Netherlands, and Germany (in French). Cryptogamie, Bryologie et Lichénologie 8, 95–108.Google Scholar
Thalius, J. (1588) Flora of the Harz Mountains, or an Enumeration of Indigenous Plant Species in the Mountains and Their Surroundings (in Latin). Frankfurt a.M.Google Scholar
Tonin, C., Vandenkoornhuyse, P., Joner, J., Straczek, E. J. and Leyval, C. (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and the effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10, 161–168.CrossRefGoogle Scholar
Tuomainen, M. H., Nunan, N., Lesranta, S. J.et al. (2006) Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Proteomics 6, 3695–3706.CrossRefGoogle ScholarPubMed
Turnau, K. and Mesjasz-Przybylowicz, J. (2003) Arbuscular mycorrhiza of Berkheya codii and other Ni hyperaccumulating members of the Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13, 185–190.CrossRefGoogle ScholarPubMed
Ent, A. (2007) Possibilities for restoration of the zinc flora in the upper Geul valley (in Dutch). De Levende Natuur 108, 14–19.Google Scholar
Ent, A. (2008) Possibilities for restoration of heavy metal vegetation in the Geul valley (in Dutch). Radboud Universiteit Nijmegen. 126 pp.Google Scholar
Riet, B. P., Bobbink, R, Willems, J. H., Lucassen, E. C. H. E. T. and Roelofs, J. G. M. (2005) Advice on Heavy Metal Vegetation (in Dutch). Directie Kennis, Ministerie van LNV, The Hague.Google Scholar
Ginneken, L., Meers, E., Guisson, R.et al. (2007) Phytoremediation of heavy metal-contaminated soils combined with bioenergy production. Journal of Environmental Engineering and Landscape Management 15, 227–236.Google Scholar
Hoof, N. A. L. M., Hassinen, V. H., Hakvoort, H. W. J.et al. (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology 126, 1519–1526.CrossRefGoogle ScholarPubMed
Viladevall, M., Santibáñez, R., Ponce, J.et al. (1994) Vegetation analysis of ‘tholas’ as an exploration method for antimony-gold mineralization in the high Andes of Bolivia (in Spanish). Actas 7° Congreso Geológico Chileno, Volumen II. pp. 1264–1267.Google Scholar
Villagrán, C. and Hinojosa, L. F. (1997) The story of forest in South America II: phytogeography (in Spanish). Revista Chilena de Historia Natural 70, 241–267.Google Scholar
Vogel-Mikuš, K., Pongrac, P., Kump, P.et al. (2007) Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environmental Pollution 147, 50–59.CrossRefGoogle ScholarPubMed
Hodenberg, A. and Finck, A. (1975) Investigations on the toxic growth damage of cereals and beet in the Harz area (in German). Landwirtschaftliche Forschung 28, 322–332.Google Scholar
Weber, M., Harada, E., Vess, C., Roepenack-Lahaye, E. and Clemens, S. (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant, Cell and Environment 29, 950–963.CrossRefGoogle ScholarPubMed
Weeda, E., Schaminée, J. H. J. and Duuren, L. (2002) Atlas of the Plant Communities in the Netherlands. Grassland, Fringes, and Dry Heathlands (in Dutch). KNNV Uitgeverij, Utrecht. pp. 88–89.Google Scholar
Whitfield, L., Richards, A. and Rimmer, D. (2004) Effects of mycorrhizal colonisation of Thymus polytrichus from heavy-metal-contaminated sites in northern England. Mycorrhiza 14, 47–54.CrossRefGoogle ScholarPubMed
Whiting, S. N., Reeves, R. D., Richards, D.et al. (2004) Research priorities for the conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology 12, 106–116.CrossRefGoogle Scholar
Wieshammer, G., Unterbrunner, R., Garcia, T. B.et al. (2007) Phytoextraction of Cd and Zn from agricultural soils by Salix sp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil 298, 255–264.CrossRefGoogle Scholar
Wild, H. (1968) Geochemical anomalies in Rhodesia. 1. The vegetation of copper bearing soils. Kirkia 7, 1–71.Google Scholar
Wild, H. (1970) Geobotanical anomalies in Rhodesia. 3. The vegetation of nickel bearing soils. Kirkia 7 (Suppl), 1–72.Google Scholar
Wilson, J. B. (1988) The cost of heavy-metal tolerance: an example. Evolution 42, 408–413.CrossRefGoogle Scholar
Wu, L., Bradshaw, A. D. and Thurman, D. A. (1975) The rapid evolution of heavy metal tolerance in plants. III. The rapid evolution of copper tolerance in Agrostis stolonifera. Heredity 34, 165–167.CrossRefGoogle Scholar
,WWF International and IUCN (1999) Metals from the forests. Mining and forest degradation. Special issue of the newsletter Arborvitae. January 1999, pp. 1–40.
Xing, J. P., Jiang, R. F., Ueno, D.et al. (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytologist 178, 315–325.CrossRefGoogle ScholarPubMed
Xiong, Z. T., Wang, T., Liu, K.et al. (2008) Differential invertase activity and root growth between Cu-tolerant and non-tolerant populations in Kummerowia stipulacea under Cu stress and nutrient deficiency. Environmental and Experimental Botany 62, 17–27.CrossRefGoogle Scholar
Zhao, F. J., Hamon, R. E., Lombi, E., McLaughlin, M. J. and McGrath, S. P. (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany 53, 535–543.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×