Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T22:56:47.009Z Has data issue: false hasContentIssue false

8 - Diatoms as indicators of environmental change in shallow lakes

from Part II - Diatoms as indicators of environmental change in flowing waters and lakes

Published online by Cambridge University Press:  05 June 2012

Helen Bennion
Affiliation:
Environmental Change Research Centre (ECRC)
Carl D. Sayer
Affiliation:
Environmental Change Research Centre (ECRC)
John Tibby
Affiliation:
The University of Adelaide
Hunter J. Carrick
Affiliation:
The Pennsylvania State University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Historically, limnological and paleolimnological research has focused on large and typically deep lakes but in the last two decades there has been a growing interest in smaller and shallower water bodies. Shallow lakes are justifiably considered as a separate lake type, distinguished physically from deeper waters by the fact that they are permanently mixed (polymictic) with a consequent lack of stratification of temperature or oxygen and with increased potential for nutrient recycling and redistribution of seston by physical water circulation patterns (Carrick et al., 1994). Whilst this is a useful distinction, there is no single definition of a shallow lake (Padisák & Reynolds, 2003). Scheffer (1998), in his classic text book, acknowledged a fundamental difference in the behavior, ecological functioning, and biotic communities of shallow waters and arbitrarily selected a mean depth of less than 3 m to define shallowness. For the purposes of this chapter we have chosen to adopt this definition and thereby to focus on lakes where, under a favorable light climate, benthic algae and/or rooted submerged macrophytes may occupy the majority of the lakebed (see also Jeppesen et al., 1997). Under enriched conditions, however, the mechanisms that stabilize the macrophyte communities of shallow lakes may often break down and a transition to pelagic production with phytoplankton dominance occurs (Scheffer et al., 1993; Vadeboncoeur et al., 2003). Importantly, because of these characteristics, shallow lakes are, for the most part, more vulnerable to a given pollutant load than large lakes.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 152 - 173
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ács, É., Reskóné, N. M., Szabó, K., Taba, Gy., & Kiss, K. T. (2005). Application of epiphytic diatoms in water quality monitoring of Lake Velence – recommendations and assignments. Acta Botanica Hungarica, 47, 211–23.CrossRefGoogle Scholar
Allen, H. L. (1971). Primary productivity, chemoorganotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecological Monographs, 4, 97–127.CrossRefGoogle Scholar
Anderson, N. J. (1993). Natural versus anthropogenic change in lakes: the role of the sediment record. Trends in Ecology and Evolution, 8, 356–61.CrossRefGoogle Scholar
Anderson, N. J. (1997). Reconstructing historical phosphorus concentrations in rural lakes using diatom models. In Phosphorus Loss from Soil to Water, ed. Tunney, H., Carton, O. T., Brookes, P. C., & Johnston, A. E., Oxford, UK: CAB International, pp. 95–118.Google Scholar
Anderson, N. J. & Odgaard, B.V. (1994). Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia, 275/276, 411–22.CrossRefGoogle Scholar
Anderson, N. J., Rippey, B., & Gibson, C. E. (1993). A comparison of sedimentary and diatom-inferred phosphorous profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia, 253, 357–366.CrossRefGoogle Scholar
Anderson, N. J., Brodersen, K. P., Ryves, D. B., et al. (2008). Climate versus in-lake processes as controls on the development of community structure in a low-Arctic Lake (south-west Greenland). Ecosystems, 11, 307–24.CrossRefGoogle Scholar
Ayres, K., Sayer, C. D., Perrow, M., & Skeate, E. (2008). Palaeolimnology as a tool to inform shallow lake management: an example from Upton Great Broad, Norfolk, UK. Biodiversity and Conservation, 17, 2153–68.CrossRefGoogle Scholar
Barker, P., Fontes, J., Gasse, F., & Druart, J. (1994). Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnology and Oceanography, 39, 99–110.CrossRefGoogle Scholar
Barry, M. J., Tibby, J., Tsitsilas, A., et al. (2005). A long term lake salinity record and its relationship to Daphnia populations. Archiv für Hydrobiologie, 163, 1–23.CrossRefGoogle Scholar
Battarbee, R. W. (1978). Observations on the recent history of Lough Neagh and its drainage basin. Philosophical Transactions of the Royal Society, London, B 281, 303–45.CrossRefGoogle Scholar
Battarbee, R. W. (1986). The eutrophication of Lough Erne inferred from the changes in the diatom assemblages of 210Pb- and 137Cs-dated sediment cores. Proceedings of the Royal Irish Academy, B 86, 141–68.Google Scholar
Battarbee, R. W. (1999). The importance of palaeolimnology to lake restoration. Hydrobiologia, 395/396, 149–59.CrossRefGoogle Scholar
Beaver, J. R., Crisman, T. L., & Bays, J. S. (1981). Thermal regimes of Florida lakes. Hydrobiologia, 83, 267–73.CrossRefGoogle Scholar
Bennion, H. (1993). A diatom–phosphorus transfer function for eutrophic ponds in south-east England. Unpublished Ph.D. thesis, University of London.
Bennion, H. (1994). A diatom–phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia, 275/276, 391–410.CrossRefGoogle Scholar
Bennion, H. (1995). Surface-sediment diatom assemblages in shallow, artificial, enriched ponds, and implications for reconstructing trophic status. Diatom Research, 10, 1–19.CrossRefGoogle Scholar
Bennion, H. & Appleby, P. G. (1999). An assessment of recent environmental change in Llangorse Lake using palaeolimnology. Aquatic Conservation: Marine and Freshwater Ecosystems, 9, 361–75.3.0.CO;2-N>CrossRefGoogle Scholar
Bennion, H. & Battarbee, R. (2007). The European Union Water Framework Directive: opportunities for palaeolimnology. Journal of Paleolimnology, 38, 285–95.CrossRefGoogle Scholar
Bennion, H. & Simpson, G. L. (in press). The use of diatom records to establish reference conditions for UK lakes subject to eutrophication. Journal of Paleolimnology.
Bennion, H. & Smith, M. A. (2000). Variability in the water chemistry of ponds in south-east England, with special reference to the seasonality of nutrients and implications for modelling trophic status. Hydrobiologia, 436, 145–58.CrossRefGoogle Scholar
Bennion, H., Appleby, P. G., & Phillips, G. L. (2001). Reconstructing nutrient histories in the Norfolk Broads: implications for the application of diatom–phosphorus transfer functions to shallow lake management. Journal of Paleolimnology, 26, 181–204.CrossRefGoogle Scholar
Bennion, H., Fluin, J., & Simpson, G. L. (2004). Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. Journal of Applied Ecology, 41, 124–38.CrossRefGoogle Scholar
Bennion, H., Juggins, S., & Anderson, N. J. (1996). Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environmental Science and Technology, 30, 2004–7.CrossRefGoogle Scholar
Bennion, H., Simpson, G. L., Hughes, M., Phillips, G., & Fozzard, I. (2003). The role of palaeolimnology in identifying reference conditions and assessing ecological status of lakes. In How to Assess and Monitor Ecological Quality in Freshwaters, Tema Nord 2003:547, ed. Ruoppa, M., Heinonen, P., Pilke, A., Rekolainen, S., Toivo, H., & Vuoristo, H., Copenhagen: Nordic Council of Ministers, pp. 57–63.Google Scholar
Beyens, L. & Denys, L. (1982). Problems in diatom analysis of deposits: allochthonous valves and fragmentation. Geol Mijnbouw, 61, 159–62.Google Scholar
Birks, H. H. & Birks, H. J. B. (2001). Recent ecosystem dynamics in nine North African lakes in the CASSARINA Project. Aquatic Ecology, 35, 461–78.CrossRefGoogle Scholar
Birks, H. H. & Birks, H. J. B. (2006). Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany, 15, 235–51.CrossRefGoogle Scholar
Birks, H. H., Battarbee, R. W., & Birks, H. J. B. (2000). The development of the aquatic ecosystem of Kråkenes Lake, western Norway, during the late-glacial and early Holocene – a synthesis. Journal of Paleolimnology, 23, 91–114.CrossRefGoogle Scholar
Bjerring, R., Bradshaw, E. G., Amsinck, S. L., et al. (2008). Inferring recent changes in the ecological state of 21 Danish candidate reference lakes (EU Water Framework Directive) using palaeolimnology. Journal of Applied Ecology, 45, 1566–75.CrossRefGoogle Scholar
Blanco, S., Ector, L., & Bécares, E. (2004). Epiphytic diatoms as water quality indicators in Spanish shallow lakes. Vie Milieu, 54, 71–9.Google Scholar
Blumenshine, S. C., Vadeboncoeur, Y., Lodge, D. M., Cottingham, K. L., & Knight, S. E. (1997). Benthic–pelagic links: responses of benthos to water-column nutrient enrichment. Journal of the North American Benthological Society, 16, 466–79.CrossRefGoogle Scholar
Bradshaw, E. G. & Anderson, N. J. (2003). Environmental factors that control the abundance of Cyclostephanos dubius (Bacillariophyceae) in Danish lakes, from seasonal to century scale. European Journal of Phycology, 38, 265–76.Google Scholar
Bradshaw, E. G., Anderson, N. J., Jensen, J. P., & Jeppesen, E. (2002). Phosphorus dynamics in Danish lakes and the implications for diatom ecology and palaeoecology. Freshwater Biology, 47, 1963–1975.CrossRefGoogle Scholar
Bradshaw, E. G., Nielsen, A. B., & Anderson, N. J. (2006). Using diatoms to assess the impacts of prehistoric, pre-industrial and modern land-use on Danish lakes. Regional Environmental Change, 6, 17–24.CrossRefGoogle Scholar
Bradshaw, E. G., Rasmussen, P., Nielsen, H., & Anderson, N. J. (2005a). Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: trends in lake primary production as reflected by algal and macrophyte remains. The Holocene, 15, 1130–42.CrossRefGoogle Scholar
Bradshaw, E. G., Rasmussen, P., & Odgaard, B. V. (2005b). Mid- to late-Holocene change and lake development at Dallund Sø, Denmark: synthesis of multiproxy data, linking land and lake. The Holocene, 15, 1152–62.CrossRefGoogle Scholar
Brenner, M., Whitmore, T. J., Flannery, M. S., & Binford, M. W. (1993). Paleolimnological methods for defining target conditions in lake restoration: Florida case studies. Lake and Reservoir Management, 7, 209–17.CrossRefGoogle Scholar
Brenner, M., Whitmore, T. J., Lasi, M. A., Cable, J. E., & Cable, P. H. (1999). A multiproxy trophic state reconstruction for shallow Orange Lake, Florida, USA: possible influence of macrophytes on limnetic nutrient concentrations. Journal of Paleolimnology, 21, 215–33.CrossRefGoogle Scholar
Brodersen, K. P., Odgaard, B. V., Vestergaard, O., & Anderson, N. J. (2001). Chironomid stratigraphy in the shallow and eutrophic lake Søbygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biology, 46, 253–67.CrossRefGoogle Scholar
Brooks, S. J., Bennion, H., & Birks, H. J. B. (2001). Tracing lake trophic history with a chironomid–total phosphorus inference model. Freshwater Biology, 46, 513–33.CrossRefGoogle Scholar
Burkholder, J. M. (1996). Interactions of benthic algae with their substrata. In Algal Ecology, ed. Stevenson, R. J., Lowe, R. L., & Bothwell, M.. New York, NY: Academic Press, pp. 253–297.CrossRefGoogle Scholar
Burkholder, J. M., & Wetzel, R. G. (1989). Microbial colonization on natural and artificial macrophytes in a phosphorus-limited, hardwater lake. Journal of Phycology, 25, 55–65.CrossRefGoogle Scholar
Burkholder, J. M., Wetzel, R. G., & Klomparens, K. L. (1990). Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Applied Environmental Microbiology, 56, 2882–90.Google ScholarPubMed
Carrick, H. J., Aldridge, F. J., & Schelske, C. L. (1993). Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography, 38, 1179–92.CrossRefGoogle Scholar
Carrick, H. J., Moon, J., & Gaylord, B. (2005). Phytoplankton dynamics and hypoxia in Lake Erie: a hypothesis concerning benthic–pelagic coupling in the Central Basin. Journal of Great Lakes Research, 31, 111–24CrossRefGoogle Scholar
Carrick, H. J., Worth, D., & Marshall, M. L. (1994). The influence of water circulation on chlorophyll–turbidity relationships in Lake Okeechobee as determined by remote-sensing. Journal of Plankton Research, 16, 1117–35.CrossRefGoogle Scholar
Cattaneo, A. (1983). Grazing on epiphytes. Limnology and Oceanography, 28, 124–32.CrossRefGoogle Scholar
Cattaneo, A. (1987). Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences, 44, 296–303.CrossRefGoogle Scholar
Cattaneo, A., & Kalff, J. (1986). The effect of grazer size manipulation on periphyton communities. Oecologia, 69, 612–617.CrossRefGoogle ScholarPubMed
Cohen, A. S. (2003). Paleolimnology: the History and Evolution of Lake Systems. New York, NY: Oxford University Press.Google Scholar
Davidson, T., Sayer, C., Bennion, H., et al. (2005). A 250 year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biology, 50, 1671–86.CrossRefGoogle Scholar
Davidson, T. A., Sayer, C. D., Perrow, M. R., & Tomlinson, M. L. (2003). Representation of fish communities by scale sub-fossils in shallow lakes: implications for inferring cyprinid–percid shifts. Journal of Paleolimnology, 30, 441–9.CrossRefGoogle Scholar
Davis, J. & Brock, M. (2008). Detecting unacceptable change in the ecological character of Ramsar wetlands. Ecological Management & Restoration, 9, 26–32.CrossRefGoogle Scholar
D'Costa, D. M., Edney, P., Kershaw, A. P., & DeDeckker, P. (1989). Late Quaternary palaeoecology of Tower Hill, Victoria, Australia. Journal of Biogeography, 16, 461–82.CrossRefGoogle Scholar
DeNicola, D. M., Eyto, E., Wemaere, A., & Irvine, K. (2004). Using epilithic algal communities to assess trophic status in Irish lakes. Journal of Phycology, 40, 481–95.CrossRefGoogle Scholar
Denys, L. (2004). Relation of abundance-weighted averages of diatom indicator values to measured environmental conditions in standing freshwaters. Ecological Indicators, 4, 255–75.CrossRefGoogle Scholar
Denys, L. (2006). Calibration of littoral diatoms to water chemistry in standing fresh waters (Flanders, lower Belgium): inference models for historical sediment assemblages. Journal of Paleolimnology, 35, 763–87.CrossRefGoogle Scholar
Denys, L. (2007). Water-chemistry transfer functions for epiphytic diatoms in standing freshwaters and a comparison with models based on littoral sediment assemblages (Flanders, Belgium). Journal of Paleolimnology, 38, 97–116.CrossRefGoogle Scholar
Dixit, S. S., Smol, J. P., Charles, D. F., et al. (1999). Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Canadian Journal of Fisheries and Aquatic Sciences, 56, 131–52.CrossRefGoogle Scholar
Donar, C., Stoermer, E. F., & Brenner, M. (2009). The Holocene paleolimnology of Lake Apopka, Florida. Nova Hedwigia, Beiheft, 135, 57–71.Google Scholar
Dong, X., Bennion, H., Battarbee, R. W., Yang, X., Yang, H., & Liu, E. (2008). Tracking eutrophication in Taihu Lake using the diatom record: potential and problems. Journal of Paleolimnology, 40, 413–29.CrossRefGoogle Scholar
Douglas, M. S. V., Smol, J. P., & Blake, W. Jr. (1994). Marked post-18th century environmental change in High-Arctic ecosystems. Science, 266, 416–19.CrossRefGoogle ScholarPubMed
Eminson, D. F. & Moss, B. (1980). The composition and ecology of periphyton communities in freshwaters. 1. The influence of host type and external environment on community composition. British Phycological Journal, 15, 429–46.CrossRefGoogle Scholar
Engstrom, D. R., Fritz, S. C., Almendinger, J. E., & Juggins, S. (2000). Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature, 408, 161–6.CrossRefGoogle ScholarPubMed
,European Union (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L327, 1–73.Google Scholar
Falkowski, P. G., & Raven, J. A. (2007). Aquatic Photosynthesis, 2nd edition, Princeton, NJ: Princeton Press.Google Scholar
Flower, R. J. (1993). Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia, 269/270, 473–84.CrossRefGoogle Scholar
Flower, R. J., Dobinson, S., Ramdani, M., et al. (2001). Recent environmental change in North African wetland lakes: diatom and other stratigraphic evidence from nine sites in the CASSARINA project. Aquatic Ecology, 35, 369–88.CrossRefGoogle Scholar
Flower, R. J., Juggins, S. J., & Battarbee, R. W. (1997). Matching diatom assemblages in lake sediment cores and modern surface sediment samples: the implications for conservation and restoration with special reference to acidified systems. Hydrobiologia, 344, 27–40.CrossRefGoogle Scholar
Fritz, S. C. (1989). Lake development and limnological response to prehistoric and historic land-use in Diss, Norfolk, England. Journal of Ecology, 77, 182–202.CrossRefGoogle Scholar
Gaiser, E. E., Childers, D. L., Jones, R. D., et al. (2006). Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography, 51, 617–30.CrossRefGoogle Scholar
Ganf, G. G. (1974). Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). Journal of Ecology, 62, 611–29.CrossRefGoogle Scholar
Gell, P. A. (1997). The development of diatom database for inferring lake salinity, Western Victoria, Australia: towards a quantitative approach for reconstructing past climates. Australian Journal of Botany, 45, 389–423.CrossRefGoogle Scholar
Gell, P., Bulpin, S., Wallbrink, P., Bickford, S., & Hancock, G. (2005a). Tareena Billabong – a palaeolimnological history of an ever-changing wetland, Chowilla Floodplain, lower Murray–Darling Basin, Australia. Marine and Freshwater Research, 56, 441–56.CrossRefGoogle Scholar
Gell, P., Tibby, J., Fluin, J., et al. (2005b). Accessing limnological change and variability using fossil diatom assemblages, south-east Australia. River Research and Applications, 21, 257–69.CrossRefGoogle Scholar
Gell, P., Tibby, J., Little, F., Baldwin, D., & Hancock, G. (2007). The impact of regulation and salinisation on floodplain lakes: the Lower River Murray, Australia. Hydrobiologia, 591, 135–46.CrossRefGoogle Scholar
Gibson, C. E., Foy, R. H., & Bailey-Watts, A. E. (1996). An analysis of the total phosphorus cycle in some temperate lakes: the response to enrichment. Freshwater Biology, 35, 525–32.CrossRefGoogle Scholar
Goldsborough, L. G. (1993). Diatom ecology in the phyllosphere of a common duckweed (Lemna minor L.). Hydrobiologia, 269/270, 463–71.CrossRefGoogle Scholar
Hall, R. I., Leavitt, P. R., Smol, J., & Zirnhelt, N. (1997). Comparison of diatoms, fossil pigments and historical methods as measures of lake eutrophication. Freshwater Biology, 38, 401–17.CrossRefGoogle Scholar
Hansson, L. A. (1989). The influence of a periphytic biolayer on phosphorus exchange between substrate and water. Archiv für Hydrobiologie, 115, 21–6.Google Scholar
Haworth, E. Y. (1972). The recent diatom history of Loch Leven, Kinross. Freshwater Biology, 2, 131–41.CrossRefGoogle Scholar
Haynes, D., Gell, P., Tibby, J., Hancock, G., & Goonan, P. (2007). Against the tide: the freshening of naturally saline coastal lakes, southeastern South Australia. Hydrobiologia, 591, 165–83.CrossRefGoogle Scholar
Hellström, T. (1991). The effect of resuspension on algal production in a shallow lake. Hydrobiologia, 213, 183–90.CrossRefGoogle Scholar
Hickman, M. (1987). Paleolimnology of a large shallow lake; Cooking Lake, Alberta, Canada. Archiv für Hydrobiologie, 111, 121–36.Google Scholar
Hofmann, G. (1994). Aufwachs-Diatomeen in Seen und ihre Eignung als Indikataren der Trophie. Bibliotheca Diatomologica, 30, 1–241.Google Scholar
Hudon, C. & Bourget, E. (1983). The effects of light on the vertical structure of epibenthic diatom communities. Botanica Marina, 26, 317–30.CrossRefGoogle Scholar
Hughes, R. M., Paulsen, S. G., & Stoddard, J. L. (2000). EMAP – Surface Waters: a multiassemblage, probability survey of ecological integrity in the U.S.A. Hydrobiologia, 422–23, 429–43.CrossRefGoogle Scholar
Jeppesen, E. (1998). The Ecology of Shallow Lakes – Trophic Interactions in the Pelagial. NERI Technical Report No. 247, D.Sc. dissertation, Ministry of Environment and Energy, Silkeborg, Denmark.
Jeppesen, E., Jensen, J. P., Søndergaard, M., et al. (1997). Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342/343, 151–64.CrossRefGoogle Scholar
Jeppesen, E., Leavitt, P., Meester, L., & Jensen, J. P. (2001). Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends in Ecology & Evolution, 16, 191–98.CrossRefGoogle ScholarPubMed
Jeppesen, E., Moss, B., Bennion, H., et al. (in press). Interaction of climate change and eutrophication. In Climate Change Impacts on Freshwater Ecosystems: Direct Effects and Interactions with Other Stresses, ed. Kernan, M., Moss, B., & Battarbee, R. W., Chichester: Wiley Blackwell, ch. 6.
Jeppesen, E., Søndergaard, M., Jensen, J. P., et al. (2005). Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50, 1747–71.CrossRefGoogle Scholar
Jeppesen, E., Søndergaard, M., Meerhoff, M., Lauridsen, T. L., & Jensen, J. P. (2007). Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia, 584, 239–52.CrossRefGoogle Scholar
Jeppesen, E., Søndergaard, M., Søndergaard, M., & Christoffersen, K. (1997). The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies Series 131. New York, NY: Springer-Verlag.Google Scholar
Jewson, D. H. (1992a). Size reduction, reproductive strategy and the life cycle of a centric diatom. Philosophical Transactions of the Royal Society of London, B 336, 191–213.CrossRefGoogle Scholar
Jewson, D. H. (1992b). Life cycle of a Stephanodiscus sp. (Bacillariophyta). Journal of Phycology, 28, 856–66.CrossRefGoogle Scholar
Jewson, D. H., Lowry, S. F., & Bowen, R. (2006). Co-existence and survival of diatoms on sand grains. European Journal of Phycology, 41, 131–46.CrossRefGoogle Scholar
Jewson, D. H., Rippey, B. H., & Gilmore, W. K. (1981). Loss rates from sedimentation, parasitism, and grazing during the growth, nutrient limitation, and dormancy of a diatom crop. Limnology and Oceanography, 26, 1045–56.CrossRefGoogle Scholar
Jones, J. I., Moss, B., Eaton, J. W., & Young, J. O. (2000). Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshwater Biology, 43, 591–604.CrossRefGoogle Scholar
Karst, T. L. & Smol, J. P. (2000). Paleolimnological evidence of limnetic nutrient concentration equilibrium in a shallow, macrophyte-dominated lake. Aquatic Sciences, 62, 20–38.CrossRefGoogle Scholar
Kelly, M. G., Cazaubon, A., Coring, E., et al. (1998). Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology, 10, 215–24.CrossRefGoogle Scholar
Kelly, M. G., Juggins, S., Bennion, H., et al. (2007). Use of diatoms for evaluating ecological status in UK freshwaters. Environment Agency Science Report No. SC030103, Bristol: Environment Agency.
Kelly, M. G., King, L., Jones, R. I., Barker, P. A., & Jamieson, B. J. (2008). Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia, 610, 125–9.CrossRefGoogle Scholar
Kelly, M. G. & Whitton, B. A. (1995). The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7, 433–44.CrossRefGoogle Scholar
King, L., Barker, P., & Jones, R. I. (2000). Epilithic algal communities and their relationship to environmental variables in lakes of the English Lake District. Freshwater Biology, 45, 425–42.CrossRefGoogle Scholar
King, L., Clarke, G., Bennion, H., Kelly, M., & Yallop, M. (2006). Recommendations for sampling littoral diatoms in lakes for ecological status assessments: a literature review. Journal of Applied Phycology, 18, 15–25.CrossRefGoogle Scholar
Kiss, K. T. & Padisák, J. (1990). Species succession of Thalassiosiraceae: quantitative studies in a large shallow lake (Lake Balaton, Hungary). In Proceedings of the 10th International Diatom Symposium, ed. Simola, H., pp. 481–90. Königstein: Koeltz Scientific Books.Google Scholar
Kitner, M. & Poulícková, A. (2003). Littoral diatoms as indicators for the eutrophication of shallow lakes. Hydrobiologia, 506–9, 519–24CrossRefGoogle Scholar
Krewer, J. A. & Holm, H. W. (1982). The phosphorus–chlorophyll relationship in periphytic communities in a controlled ecosystem. Hydrobiologia, 94, 173–6.CrossRefGoogle Scholar
Langdon, P. G., Ruiz, Z., Wynne, S., Sayer, C. D., & Davidson, T. A. (2010). Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshwater Biology, 55, 531–45.CrossRefGoogle Scholar
Leahy, P. J., Tibby, J., Kershaw, A. P., Heijnis, H., & Kershaw, J. S. (2005). The impact of European settlement on Bolin Billabong, a Yarra River floodplain lake, Melbourne, Australia. River Research and Applications, 21, 131–49.CrossRefGoogle Scholar
Leira, M., Jordan, P., Taylor, D., et al. (2006). Assessing the ecological status of candidate reference lakes in Ireland using palaeolimnology. Journal of Applied Ecology, 43, 816–27.CrossRefGoogle Scholar
Lewis, W. M. Jr. (1978). Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. Journal of Ecology, 66, 849–80.CrossRefGoogle Scholar
Liboriussen, L. & Jeppesen, E. (2003). Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and turbid shallow lake. Freshwater Biology, 48, 418–31.CrossRefGoogle Scholar
Lindeman, R. L. (1942). The trophic aspect of ecology. Ecology, 23, 399–417.CrossRefGoogle Scholar
Lowe, R. L. (1996). Periphyton patterns in lakes. In Algal Ecology, ed. Stevenson, R. J., Lowe, R. L., & Bothwell, M., New York, NY: Academic Press, pp. 57–76.CrossRefGoogle Scholar
Lund, J. W. G. (1954). The seasonal cycle of the plankton diatom, Melosira italica Kütz. subarctica O. Mull. Journal of Ecology, 42, 151–79.
Lund, J. W. G. (1971). An artificial alteration of the seasonal cycle of the plankton diatom Melosira italica subsp. subarctica in an English lake. Journal of Ecology, 59, 521–33.CrossRefGoogle Scholar
Maceina, M. J., & Soballe, D. M. (1990). Wind-related limnological variation in Lake Okeechobee, Florida. Lake Reservoir Management, 6, 93–100.CrossRefGoogle Scholar
Marshall, W. L. & Warakomski, J. M. (1980). Amorphous silica solubilities II. Effect of aqueous salt solutions at 25°C. Geochimica et Cosmochimica Acta, 44, 915–24.CrossRefGoogle Scholar
McCormick, P. V. & Stevenson, R. J. (1998). Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology, 4, 726–33.CrossRefGoogle Scholar
McCormick, P. V., Shuford, R. B., Backus, J. G., & Kennedy, W. C. (1998). Spatial and temporal patterns of periphyton biomass and productivity in the Florida Everglades, Florida USA. Hydrobiologia, 362, 185–208.CrossRefGoogle Scholar
McGowan, S., Leavitt, P. R., Hall, R. I., et al. (2005). Controls of algal abundance and community composition during ecosystem state change. Ecology, 86, 2200–11.CrossRefGoogle Scholar
Miettinen, J. O., Kukkonen, M., & Simola, H. (2005). Hindcasting baseline values for water colour and total phosphorus concentration in lakes using sedimentary diatoms – implications for lake typology in Finland. Boreal Environmental Research, 10, 31–43.Google Scholar
Millie, D. F. & Lowe, R. L. (1983). Studies on Lake Erie's littoral algae: host specificity and temporal periodicity of epiphytic diatoms. Hydrobiologia, 99, 7–18.CrossRefGoogle Scholar
Moss, B. (1968). The chlorophyll a content of some benthic algal communities. Archiv für Hydrobiologie, 65, 51–62.Google Scholar
Moss, B. (1980). Further studies on the palaeolimnology and changes in the phosphorus budget of Barton Broad, Norfolk. Freshwater Biology, 10, 261–79.CrossRefGoogle Scholar
Moss, B. (2001). The Broads. London: Harper Collins.Google Scholar
Muller, U. (1995). Vertical zonation and production rates of epiphytic algae on Phragmites australis. Freshwater Biology, 34, 69–80.CrossRefGoogle Scholar
Nipkow, F. (1950). Rufeformen planktischer Kieselalgan im geschichteten Schlamm des Zurichsees. Schweizerische Zeitschrift für Hydrologie, 12, 263–70.Google Scholar
Ogden, R. W. (2000). Modern and historical variation in aquatic macrophyte cover of billabongs associated with catchment development. Regulated Rivers – Research & Management, 16, 487–512.3.0.CO;2-Y>CrossRefGoogle Scholar
Ogden, R., Spooner, N., Reid, M., & Head, J. (2001). Sediment dates with implications for the age of conversion from palaeochannel to modern fluvial activity on the Murray River and tributaries. Quaternary International, 83–85, 195–209.CrossRefGoogle Scholar
Oldfield, F. & Appleby, P. G. (1984). Empirical testing of 210Pb-dating models for lake sediments. In Lake Sediments and Environmental History, ed. Lund, J. W. G., & Haworth, E. Y., pp. 93–124. Leicester: University of Leicester Press.Google Scholar
Padisák, J. & Reynolds, C. S. (2003). Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia, 506–9, 1–11.CrossRefGoogle Scholar
Padisák, J., Toth, L. G., & Rajczy, M. (1988). The role of storms in the summer succession of the phytoplankton community in a shallow lake (Lake Balaton, Hungary). Journal of Plankton Research, 10, 249–65.CrossRefGoogle Scholar
Philibert, A. & Prairie, Y. T. (2002). Is the introduction of benthic species necessary for open-water chemical reconstruction in diatom-based transfer functions? Canadian Journal of Fisheries and Aquatic Sciences, 59, 938–51.CrossRefGoogle Scholar
Phillips, G. L. (1992). A case study in restoration: shallow eutrophic lakes in the Norfolk Broads. In Eutrophication of Freshwaters, ed. Harper, D., London: Chapman & Hall, pp. 251–278.Google Scholar
Pollard, P. & Huxham, M. (1998). The European Water Framework Directive: a new era in the management of aquatic ecosystem health?Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 773–92.3.0.CO;2-R>CrossRefGoogle Scholar
Ponader, K. C., Charles, D. F., & Belton, T. J. (2007). Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators, 7, 79–93.CrossRefGoogle Scholar
Poulícková, A., Duchoslav, M., & Dokulil, M. (2004). Littoral diatom assemblages as bioindicators of lake trophic status: a case study from perialpine lakes in Austria. European Journal of Phycology, 39, 143–52.CrossRefGoogle Scholar
Prygiel, J. & Coste, M. (1993). The assessment of water quality in the Artois-Picardie water basin (France) by the use of diatom indices. Hydrobiologia, 269–270, 343–349.CrossRefGoogle Scholar
Räsänen, J., Kauppila, T., & Salonen, V. P. (2006). Sediment-based investigation of naturally or historically eutrophic lakes – implications for lake management. Journal of Environmental Management, 79, 253–65.CrossRefGoogle ScholarPubMed
Reavie, E. D. & Smol, J. P. (1997). Diatom-based model to infer past littoral habitat characteristics in the St. Lawrence River. Journal of Great Lakes Research, 23, 339–48.CrossRefGoogle Scholar
Reddy, K. R., O'Conner, G. A., & Schelske, C. L. (1999). Phosphorus Biogeochemistry in Subtropical Ecosystems. Washington DC: Lewis Publishers.Google Scholar
Reid, M. (2002). A diatom-based palaeoecological study of two billabongs on the Goulburn River floodplain, southeast Australia. In Proceedings of the 15th International Diatom Symposium, ed. John, J., Königstein: Koeltz Scientific Books, pp. 237–253.Google Scholar
Reid, M., Sayer, C. D., Kershaw, A. P., & Heijnis, H. (2007). Palaeolimnological evidence for submerged plant loss in a floodplain lake associated with accelerated catchment soil erosion (Murray River, Australia). Journal of Paleolimnology, 38, 191–208.CrossRefGoogle Scholar
Reynolds, C. S. (1984). The Ecology of Freshwater Plankton. Cambridge: Cambridge University Press.Google Scholar
Reynolds, C. S., Wiseman, S. W., Gadfrey, B. M., & Butterwick, C. (1983). Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. Journal of Plankton Research, 5, 203–34.CrossRefGoogle Scholar
Rippey, B. (1983). A laboratory study of silicon release processes from a lake sediment (Lough Neagh, Northern Ireland). Archiv für Hydrobiologie, 96, 417–33.Google Scholar
Roozen, C. F. J. M., Lurling, M., Vlek, H., et al. (2007). Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biology, 52, 977–87.CrossRefGoogle Scholar
Round, F. E. (1981). The Ecology of Algae. Cambridge: Cambridge University Press.Google Scholar
Round, F. E. (1991). Use of diatoms for monitoring rivers. In Use of Algae for Monitoring Rivers, ed. Whitton, B. A., Rott, E., & Friedrich, G., Innsbruck: Universitat Innsbruck, pp. 25–32.Google Scholar
Saunders, K. M., McMinn, A., Roberts, D., Hodgson, D. A., & Heijnis, H. (2007). Recent human-induced salinity changes in Ramsar-listed Orielton Lagoon, south-east Tasmania, Australia: a new approach for coastal lagoon conservation and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 51–70.CrossRefGoogle Scholar
Sayer, C. D. (2001). Problems with the application of diatom–total phosphorus transfer functions: examples from a shallow English Lake. Freshwater Biology 46, 743–57.CrossRefGoogle Scholar
Sayer, C. D., Burgess, A., Kari, K., et al. (2010a). Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte dominance. Freshwater Biology, 55, 565–83.CrossRefGoogle Scholar
Sayer, C. D., Davidson, T. A., & Langdon, P. G. (2010b) Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshwater Biology, 55, 487–99.CrossRefGoogle Scholar
Sayer, C. D., Jackson, M. J., Hoare, D. J., et al. (2006). TBT causes regime shift in shallow lakes. Environmental Science & Technology, 40, 5269–75.CrossRefGoogle ScholarPubMed
Sayer, C. D. & Roberts, N. (2001). Establishing realistic restoration targets for nutrient-enriched shallow lakes: linking diatom ecology and palaeoecology at the Attenborough Ponds, UK. Hydrobiologia, 448, 117–42.CrossRefGoogle Scholar
Sayer, C. D., Roberts, N., Sadler, J., David, C., & Wade, M. (1999). Biodiversity changes in a shallow lake ecosystem: a multi-proxy palaeolimnological analysis. Journal of Biogeography, 26, 97–114.CrossRefGoogle Scholar
Schaumburg, J., Schranz, C., Hofmann, G., et al. (2004). Macrophytes and phytobenthos as indicators of ecological status in German lakes – a contribution to the implementation of the Water Framework Directive. Limnologica, 34, 302–14.CrossRefGoogle Scholar
Schaumburg, J., Schranz, C., Stelzer, D., & Hofmann, G. (2007). Action instructions for the ecological evaluation of lakes for implementation of the EU Water Framework Directive: Makrophytes and Phytobenthos. Augsburg: Bavarian Environment Agency.
Scheffer, M. (1998). Ecology of Shallow Lakes. London: Chapman and Hall.Google Scholar
Scheffer, M., Hosper, S. H., Meijer, M.-L., Moss, B., & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology and Evolution, 8, 275–9.CrossRefGoogle ScholarPubMed
Scheffer, M., Rinaldi, S., Huisman, J., & Weissing, F. J. (2003). Why plankton have no equilibrium: solutions to the paradox. Hydrobiologia, 491, 9–18.CrossRefGoogle Scholar
Scheffer, M. & Nes, E. H. (2007). Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth, and lake size. Hydrobiologia, 584, 455–66.CrossRefGoogle Scholar
Schelske, C. L., Donar, C. M., & Stoermer, E. F. (1999). A test of paleolimnologic proxies for the planktonic/benthic ratio of microfossil diatoms in Lake Apopka. In Proceedings of the 14th International Diatom Symposium, ed. Mayama, S., Idei, M., & Koizumi, I.. Königstein: Koeltz Scientific Books, pp. 367–82.Google Scholar
Schmidt, R., Mäusbacher, R. M., & Müller, J. (1990). Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Island). Journal of Paleolimnology, 3, 55–74.CrossRefGoogle Scholar
Schönfelder, I., Gelbrecht, J., Schönfelder, J., & Steinberg, C. E. W. (2002). Relationships between littoral diatoms and their chemical environment in northeastern German lakes and rivers. Journal of Phycology, 38, 66–82.CrossRefGoogle Scholar
Sicko-Goad, L. (1986). Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from the anoxic sediments of Douglas Lake, Michigan. II. Electron microscopy. Journal of Phycology, 22, 28–35.CrossRefGoogle Scholar
Simpson, G. L., Shilland, E. M., Winterbottom, J. M., & Keay, K. (2005). Defining reference conditions for acidified waters using a modern analogue approach. Environmental Pollution, 137, 119–33.CrossRefGoogle ScholarPubMed
Smetacek, V. S. (1985). Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology, 84, 239–51.CrossRefGoogle Scholar
Smith, V. H., Joye, S. B., & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 51, 351–5.CrossRefGoogle Scholar
Smol, J. P. (2008). Pollution of Lakes and Rivers: a Paleoenvironmental Perspective, 2nd Edition. Oxford: Blackwell Publishing.Google Scholar
Sommer, U. (1988). Growth and survival strategies of planktonic diatoms. In Growth and Reproductive Strategies of Freshwater Phytoplankton, ed. Sandgren, C. D., Cambridge: Cambridge University Press, pp. 388–433.Google Scholar
Søndergaard, M., Jeppesen, E., Lauridsen, T., et al. (2007). Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology, 44, 1095–105.CrossRefGoogle Scholar
Stenger-Kovacs, C., Buczko, K., Hajnal, E., & Padisák, J. (2007). Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: Trophic Diatom Index for Lakes (TDIL) developed in Hungary. Hydrobiologia, 589, 141–54.CrossRefGoogle Scholar
Stoermer, E. F., Andresen, N. A., & Schelske, C. L. (1992). Diatom succession in the recent sediments of Lake Okeechobee, Florida, USA. Diatom Research, 7, 367–86.CrossRefGoogle Scholar
Taffs, K. H. (2001). Diatoms as indicators of wetland salinity in the Upper South East of South Australia. The Holocene, 11, 281–90.CrossRefGoogle Scholar
Tibby, J. (2003). Explaining lake and catchment change using sediment derived and written histories: an Australian perspective. The Science of the Total Environment, 310, 61–71.CrossRefGoogle ScholarPubMed
Tibby, J., Gell, P., Fluin, J., & Sluiter, I. (2007). Diatom–salinity relationships in wetlands: assessing the influence of salinity variability on the development of inference models. Hydrobiologia, 591, 207–218.CrossRefGoogle Scholar
Tibby, J., Reid, M., Fluin, J., Hart, B. T., & Kershaw, A. P. (2003). Assessing long-term pH change in an Australian river catchment using monitoring and palaeolimnological data. Environmental Science and Technology, 37, 3250–5.CrossRefGoogle Scholar
Vadeboncoeur, Y., Jeppesen, E., Vander Zanden, M. J., et al. (2003). From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography, 48, 140–818.CrossRefGoogle Scholar
Dam, H. (1996). Partial recovery of moorland pools from acidification: indications by chemistry and diatoms. Netherlands Journal of Aquatic Ecology, 30, 203–18.CrossRefGoogle Scholar
Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–33.CrossRefGoogle Scholar
Molen, D. T., & Portielje, R. (1999). Multi-lake studies in the Netherlands: trends in eutrophication. Hydrobiologia, 409, 359–65.CrossRefGoogle Scholar
Walker, M. J. C., Griffiths, H. I., Ringwood, V., & Evans, J. G. (1993). An early-Holocene pollen, mollusc and ostracod sequence from lake marl at Llangorse Lake, south Wales, UK. The Holocene, 3, 138–49.CrossRefGoogle Scholar
Werner, P. & Smol, J. P. (2005). Diatom–environmental relationships and nutrient transfer functions from contrasting shallow and deep limestone lakes in Ontario, Canada. Hydrobiologia, 533, 145–73.CrossRefGoogle Scholar
Wetzel, R. G. (1983). Periphyton of Aquatic Ecosystems. The Hague: B. V. Junk Publishers.CrossRefGoogle Scholar
Wetzel, R. G. (1996). Benthic algae and nutrient cycling in lentic freshwater ecosystems. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L., & Lowe, R. L., New York, NY: Academic Press, pp. 641–667.CrossRefGoogle Scholar
Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems, 3rd edition, New York, NY: Springer-Verlag.Google Scholar
Williams, D. M. & Round, F. E. (1987). Revision of the genus Fragilaria. Diatom Research, 2, 267–88.CrossRefGoogle Scholar
Yang, X., Anderson, N. J., Dong, X., & Shen, J. (2008). Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshwater Biology, 53, 1273–90.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×