Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T20:05:04.440Z Has data issue: false hasContentIssue false

Appendix A - Update on filtration, storage and extraction solvents

Published online by Cambridge University Press:  05 March 2012

Suzanne Roy
Affiliation:
Université du Québec à Rimouski, Canada
Carole A. Llewellyn
Affiliation:
Plymouth Marine Laboratory
Einar Skarstad Egeland
Affiliation:
University of Nordland, Norway
Geir Johnsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

Filtration

In Chapter 10 of Jeffrey et al. (1997), Whatman GF/F (or equivalent) filters (0.7 μm nominal pore size) were recommended for sample filtration. With the exception of targeted studies, GF/F filters remain the most commonly used media for routine filtration and accompanying in vitro analyses by HPLC, fluorometry and spectrophotometry. As indicated in the above-mentioned Chapter 10 (p. 284–287), many studies have compared the effectiveness of different filter types and highlighted their advantages/disadvantages. Of particular note are three relatively recent papers highlighting the limitations of GF/F filters. Knefelkamp et al. (2007) compared six different filter types and concluded that Whatman nylon membranes (0.2 μm pore size, 47 mm diameter) provided the most consistent results with respect to chlorophyll a analyses. Nucleopore filters (0.2 μm) have been reported to retain as much as four times the amount of chlorophyll a as GF/F filters in open ocean samples (Dickson and Wheeler, 1993). Furthermore, Lee et al. (1995) reported that GF/F filters retained only 13–51% of small bacterioplankton (< 0.8 μm diameter) in natural samples. In contrast, recent comparisons of filter types have reported no differences in pigment concentrations obtained using GF/F and membrane filters in a variety of aquatic habitats (Chavez et al., 1995; Morán et al., 1999). The choice of filter type, whether glass-fibre or membrane, should be determined by the individual investigator for their particular application. However, once a filter type is selected, it should be used uniformly for sample filtrations to insure consistency between samples.

In estuarine and coastal waters, particulate matter (seston) may result in rapid saturation and ‘clogging’ of filters. Continued vacuum filtration of ‘clogged’ filters may promote mechanical stress and induce cell lysis, potentially resulting in underestimation of the actual pigment concentrations in the sample (Goldman and Dennett, 1985; Taguchi and Laws, 1988; Richardson and Pinckney, 2004). The total time for sample filtration should not exceed 5–10 min to minimize filter saturation (Wasmund et al., 2006). Filters should be removed as soon as the passage of water through the filter is undetectable and the vacuum should never exceed 50 kPa. Although not commonly used, positive pressure filtration (7–14 kPa) reportedly allows the filtration of larger volumes of water with reduced filtration times (Gibb et al., 2001; Bidigare et al., 2002). Regardless of the filtration method used, multiple filters can be pooled to achieve the biomass necessary for HPLC analyses. After filtration, filters should be folded in half, blotted on absorbent paper to remove excess water, and immediately flash frozen and stored in liquid nitrogen or at −80 °C (Wright and Jeffrey, 2006).

Type
Chapter
Information
Phytoplankton Pigments
Characterization, Chemotaxonomy and Applications in Oceanography
, pp. 627 - 635
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansotegui, A.Sarobe, A.Trigueros, J. M.Urrutxurtu, I.Orive, E. 2003 Size distribution of algal pigments and phytoplankton assemblages in a coastal-estuarine environment: contribution of small eukaryotic algaeJ. Plankton Res 24 341CrossRefGoogle Scholar
Aranami, K.Watanabe, S.Tsunogai, S.Hayashi, M.Furuya, K.Nagata, T. 2001 Biochemical variation in dimethylsulfide, phytoplankton pigments and heterotrophic bacterial production in the Subarctic North Pacific during summerJ. Oceanogr 57 315CrossRefGoogle Scholar
Baek, S. H.Shimode, S.Kikuchi, T. 2007 Reproductive ecology of the dominant dinoflagellate, , in coastal area of Sagami Bay, JapanJ. Oceanogr 63 35CrossRefGoogle Scholar
Bahnwart, M.Hübener, T.Schubert, H. 1999 Downstream changes in phytoplankton composition and biomass in a lowland river-lake system (Warnow River, Germany)Hydrobiologia 391 99CrossRefGoogle Scholar
Barlow, R. G.Cummings, D. G.Gibb, S. W. 1997 Improved resolution of mono- and divinyl chlorophylls and and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLCMar. Ecol. Prog. Ser 161 303CrossRefGoogle Scholar
Bidigare, R. R.Van Heukelem, L.Trees, C. C. 2002 Mueller, J.Fargion, G.
Bowles, N. D.Paerl, H. W.Tucker, J. 1984 Effective solvents and extraction periods employed in phytoplankton carotenoid and chlorophyll determinationsCan. J. Fish. Aquat. Sci 42 1127CrossRefGoogle Scholar
Brotas, V.Mendes, C. R.Cartaxana, P. 2007 Microphytobenthic biomass assessment by pigment analysis: comparison of spectrophotometry and high performance liquid chromatography methodsHydrobiologia 587 19CrossRefGoogle Scholar
Buffan-Dubau, E.Carman, K. R. 2000 Extraction of benthic microalgal pigments for HPLC analysesMar. Ecol. Prog. Ser 204 293CrossRefGoogle Scholar
Carrick, H. J.Schelske, C. L. 1997 Have we overlooked the importance of small phytoplankton in productive waters?Limnol. Oceanogr 42 1613CrossRefGoogle Scholar
Chavez, F. P.Buck, K. R.Bidigare, R. R.Karl, D. M.Hebel, D.Latasa, M.Campbell, L. 1995 On the chlorophyll retention properties of glass-fiber GF/F filtersLimnol. Oceanogr 40 428CrossRefGoogle Scholar
Chen, N.Bianchi, T. S.Bland, J. M. 2003 Novel decomposition products of chlorophyll- in continental shelf (Louisiana shelf) sediments: Formation and transformation of carotenol chlorin estersGeochim. Cosmochim. Acta 67 2027CrossRefGoogle Scholar
Claustre, H.Hooker, S. B.Van Heukelem, L.Berthon, J.-F.Barlow, R.Ras, J.Sessions, H.Targa, C.Thomas, C. S.van der Linde, D.Marty, J.-C. 2004 An intercomparison of HPLC phytoplankton pigment methods using in situ samples: application to remote sensing and database activitiesMar. Chem 85 41CrossRefGoogle Scholar
Craft, N. E.Soares, J. H. 1992 Relative solubility, stability, and absorptivity lutein and β-carotene in organic solventsJ. Agric. Food Chem 40 431CrossRefGoogle Scholar
Dickson, M.-L.Wheeler, P. A. 1993 Chlorophyll concentrations in the North Pacific: Does a latitudinal gradient exist?Limnol. Oceanogr 38 1813CrossRefGoogle Scholar
Fujiki, T.Toda, T.Kikuchi, T.Taguchi, S. 2003 Photoprotective response of xanthophyll pigments during phytoplankton blooms in Sagami Bay, JapanJ. Plankton Res 25 317CrossRefGoogle Scholar
Gibb, S. W.Cummings, D. G.Irigoien, X.Barlow, R. G.Fauzi, R.Mantoura, C. 2001 Phytoplankton pigment chemotaxonomy of the northeastern AtlanticDeep-Sea Res. II 48 795CrossRefGoogle Scholar
Goldman, J. C.Dennett, M. R. 1985 Susceptibility of some marine phytoplankton species to cell breakage during filtration and post-filtration rinsingJ. Exp. Mar. Biol. Ecol 86 47CrossRefGoogle Scholar
Grinham, A. R.Carruthers, T. J. B.Fisher, P. L.Udy, J. W.Dennison, W. C. 2007 Accurately measuring the abundance of benthic microalgae in spatially variable habitats. Oceanogr. Methods 5 119CrossRefGoogle Scholar
Hagerthey, S. E.Louda, J. W.Mongkronsri, P. 2006 Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll determination and chemotaxonomic assessmentJ. Phycol 42 1125CrossRefGoogle Scholar
Hayashi, M.Furuya, K.Hattori, H. 2001 Spatial heterogeneity in distributions of chlorophyll derivatives in the Subarctic North Pacific during summerJ. Oceanogr 57 323CrossRefGoogle Scholar
Hooker, S. B.Van Heukelem, L.Thomas, C. S.Claustre, H.Ras, J.Barlow, R.Sessions, H.Schlüter, L.Perl, J.Trees, C.Stuart, V.Head, E.Clementson, L.Fishwick, J.Llewellyn, C.Aiken, J. 2005 The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2)GreenbeltNASA Goddard Space Flight Center.Google Scholar
Iriarte, A.Purdie, D. A. 1994 Size distribution of chlorophyll biomass and primary production in a temperate estuary (Southampton Water): the contribution of photosynthetic picoplanktonMar. Ecol. Prog. Ser 115 283CrossRefGoogle Scholar
Jeffrey, S. W.Mantoura, R. F. C.Wright, S. W. 1997 Phytoplankton Pigments in Oceanography: Guidelines to Modern MethodsParisUNESCO Publishing
Joint, I.Henriksen, P.Fonnes, G. A.Bourne, D.Thingstad, T. F.Riemann, B. 2002 Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosmsAquat. Microb. Ecol 29 145CrossRefGoogle Scholar
Jørgensen, B. B.Des Marais, D. 1986 A simple fiber-optic microprobe for high resolution light measurements: Application in marine sedimentLimnol. Oceanogr 31 1376CrossRefGoogle ScholarPubMed
Knefelkamp, B.Carstens, K.Wiltshire, K. H. 2007 Comparison of different filter types on retention and nutrient measurementsJ. Exp. Mar. Biol. Ecol 345 61CrossRefGoogle Scholar
Kruskopf, M.Flynn, K. J. 2006 Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rateNew Phytol 169 525CrossRefGoogle ScholarPubMed
Kühl, M.Lassen, C.Jørgensen, B. 1994 Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobesMar. Ecol. Prog. Ser 105 139CrossRefGoogle Scholar
Kuwahara, V. S.Toda, T.Hamasaki, K.Kikuchi, T.Taguchi, S. 2000 Variability in the relative penetration of ultraviolet radiation to photosynthetically available radiation in temperate coastal waters, JapanJ. Oceanogr 56 399CrossRefGoogle Scholar
Lance, V. P.Hiscock, M. R.Hilting, A. K.Stuebe, D. A.Bidigare, R. R.Smith, W. O.Barber, R. T. 2007 Primary productivity, differential size fraction and pigment composition responses in two Southern Ocean in situ iron enrichmentsDeep-Sea Res. I 54 747CrossRefGoogle Scholar
Latasa, M.Bidigare, R. R. 1998 A comparison of phytoplankton populations of the Arabian Sea during the Spring Intermonsoon and Southwest Monsoon of 1995 as described by HPLC-analyzed pigmentsDeep-Sea Res. II 45 2133CrossRefGoogle Scholar
Latasa, M.van Lenning, K.Garrido, J. L.Scharek, R.Estrada, M.Rodríguez, F.Zapata, M. 2001 Losses of chlorophylls and carotenoids in aqueous acetone and methanol extracts prepared for RPHPLC analysis of pigmentsChromatographia 53 385CrossRefGoogle Scholar
Leavitt, P. R.Hodgson, D. A. 2001 15. Sedimentary pigmentsTracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous IndicatorsSmol, J. P.Birks, H. J. B.Dordrecht, W. M. Last.Kluwer Academic Publishers292Google Scholar
Lee, S.Kang, Y. -C.Fuhrman, J. A. 1995 Imperfect retention of natural bacterioplankton cells by glass fiber filtersMar. Ecol. Prog. Ser 119 285CrossRefGoogle Scholar
Mantoura, R. F. C.Wright, S. W.Jeffrey, S. W.Barlow, R. G.Cummings, D. E. 1997 Filtration and storage of pigments from microalgaePhytoplankton Pigments in Oceanography: Guidelines to Modern MethodsJeffrey, S. W.Mantoura, R. F. C.Wright, S. W.ParisUNESCO PublishingGoogle Scholar
Miyaguchi, H.Fujiki, T.Kikuchi, T.Kuwahara, V. S.Toda, T. 2006 Relationship between the bloom of and environmental factors in the coastal waters of Sagami Bay, JapanJ. Plankton Res 28 313CrossRefGoogle Scholar
Morán, X. A. G.Gasol, J. P.Arin, L.Estrada, M. 1999 A comparison between glass fiber and membrane filters for the estimation of phytoplankton POC and DOC production. Prog. Ser 187 31CrossRefGoogle Scholar
Mouget, J. -L.Tremblin, G.Morant-Manceau, A.Morançais, M.Robert, J.-M. 1999 Long-term photoacclimation of (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesisEur. J. Phycol 34 109CrossRefGoogle Scholar
Pilkaitytë, R.Schoor, A.Schubert, H. 2004 Response of phytoplankton communities to salinity changes – a mesocosm approachHydrobiologia 513 27CrossRefGoogle Scholar
Reuss, N.Conley, D. J. 2005 Effects of sediment storage conditions on pigment analysesLimnol. Oceanogr. Methods 3 477CrossRefGoogle Scholar
Richardson, T. L.Pinckney, J. L. 2004 Monitoring of the toxic dinoflagellate using gyroxanthin-based detection methodsAppl. Phycol 16 315CrossRefGoogle Scholar
Riegman, R.Flameling, I. A.Noordeloos, A. A. M. 1998 Size-fractionated uptake of ammonium, nitrate and urea and phytoplankton growth in the North Sea during spring 1994Mar. Ecol. Prog. Ser 173 85CrossRefGoogle Scholar
Schagerl, M.Künzl, G. 2007 Chlorophyll extraction from freshwater algae – a reevaluationBiol. Bratislava 62 270CrossRefGoogle Scholar
Seoane, S.Laza, A.Orive, E. 2006 Monitoring phytoplankton assemblages in estuarine waters: The application of pigment analysis and microscopy to size-fractionated samplesEst. Coast. Shelf Sci 67 343CrossRefGoogle Scholar
Sosik, H. M. 1999 Storage of marine particulate samples for light-absorption measurementsLimnol. Oceanogr 44 1139CrossRefGoogle Scholar
Southerland, H. A.Lewitus, A. J. 2004 Physiological responses of estuarine phytoplankton to ultraviolet light-induced fluoranthene toxicityJ. Exp. Mar. Biol. Ecol 298 303CrossRefGoogle Scholar
Sun, J.Feng, Y.Zhang, Y.Hutchins, D. A. 2007 Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays, and Delaware BayHydrobiologia 589 127CrossRefGoogle Scholar
Suzuki, R.Ishimaru, T. 1990 An improved method for the determination of phytoplankton chlorophyll using ,-dimethylformamideJ. Ocean. Soc. Jpn 46 190CrossRefGoogle Scholar
Tada, K.Yamaguchi, H.Montani, S. 2004 Comparison of chlorophyll concentrations obtained with 90% acetone and ,-dimethylformamide extraction in coastal waterJ. Oceanogr 60 259CrossRefGoogle Scholar
Taguchi, S.Laws, E. A. 1988 On the microparticles which pass through glass fiber filter type GF/F in coastal and open watersJ. Plankton Res 10 999CrossRefGoogle Scholar
Van Heukelem, L.Thomas, C.Glibert, P. 2002
van Leeuwe, M. A.Villerius, L. A.Roggeveld, J.Visser, R. J. W.Stefels, J. 2006 An optimized method for automated analysis of algal pigments by HPLCMar. Chem 102 267CrossRefGoogle Scholar
Vidussi, F.Claustre, H.Bustillos-Guzmàn, J.Cailliau, C.Marty, J.-C. 1996 Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll from divinyl-chlorophyll and zeaxanthin from luteinJ. Plankton Res 18 2377CrossRefGoogle Scholar
Wasmund, N.Topp, I.Schories, D. 2006 Optimising the storage and extraction of chlorophyll samplesOceanologia 48 125Google Scholar
Wiltshire, K. H.Blackburn, J.Paterson, D. M. 1997 The cryolander: a new method for fine-scale in situ sampling of intertidal surface sedimentsJ. Sed. Res 97 977CrossRefGoogle Scholar
Wright, S. W.Jeffrey, S. W. 2006 Pigment markers for phytoplankton productionMarine Organic Matter: Biomarkers, Isotopes and DNAVolkman, J. K.BerlinSpringer71CrossRefGoogle Scholar
Zapata, M. 2005 Recent advances in pigment analysis as applied to picophytoplanktonVie et Milieu 55 233Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×