Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T16:55:40.624Z Has data issue: false hasContentIssue false

5 - Cell determination

Published online by Cambridge University Press:  22 August 2009

Michalis Agathocleous
Affiliation:
Department of Anatomy and Physiology, University of Cambridge, Downing Street, Cambridge CB2 3DY UK
William A. Harris
Affiliation:
Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

The sheet of retinal neuroepithelial cells resulting from the specification of the eye field is transformed into a layered array of differentiated cells by the simultaneous processes of cell division, apoptosis, differentiation and migration. The production of the six major cell types, with their multiple subtypes, in the correct numbers and at the appropriate time is essential for normal development. The retina has been studied extensively as a model for cell determination in the vertebrate nervous system for a number of reasons. It is easily accessible to genetic and embryological manipulations in vivo because of its position and large size and can also be studied in vitro because cells in retinal explant cultures faithfully follow in vivo differentiation programmes. Numerous genes involved in cell determination do not affect other processes and their disruption does not cause early lethality. The different major cell types can be readily distinguished by their laminar position, their distinct morphologies and by cell-specific markers. The persistence of a proliferating ciliary marginal zone in amphibians, fish and avian species provides a model that recapitulates embryonic proliferation and differentiation and facilitates the examination of gene expression and function (Perron et al., 1998).

Retinal progenitors are multipotent and vary greatly with respect to their clonal compositions, both in terms of the cell types produced and the number of progeny.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. and Hatlee, M. (1989). Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science, 243, 391–3CrossRefGoogle ScholarPubMed
Akagi, T., Inoue, T., Miyoshi, G.et al. (2004). Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification. J. Biol. Chem., 279, 28492–8CrossRefGoogle ScholarPubMed
Alexiades, M. R. and Cepko, C. L. (1997). Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Development, 124, 1119–31Google ScholarPubMed
Altshuler, D., Turco, Lo J. J., Rush, J. and Cepko, C. (1993). Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development, 119, 1317–28Google ScholarPubMed
Anchan, R. M. and Reh, T. A. (1995). Transforming growth factor-beta-3 is mitogenic for rat retinal progenitor cells in vitro. J. Neurobiol., 28, 133–45CrossRefGoogle ScholarPubMed
Arendt, D. (2003). Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol., 47, 563–71Google ScholarPubMed
Austin, C. P., Feldman, D. E., Ida, J. A. Jr and Cepko, C. L. (1995). Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development, 121, 3637–50Google ScholarPubMed
Belecky-Adams, T., Cook, B. and Adler, R. (1996). Correlations between terminal mitosis and differentiated fate of retinal precursor cells in vivo and in vitro: analysis with the ‘window-labelling’ technique. Dev. Biol., 178, 304–15CrossRefGoogle ScholarPubMed
Belliveau, M. J. and Cepko, C. L. (1999). Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development, 126, 555–66Google ScholarPubMed
Belliveau, M. J., Young, T. L. and Cepko, C. L. (2000). Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis. J. Neurosci., 20, 2247–54CrossRefGoogle ScholarPubMed
Blackshaw, S., Fraioli, R. E., Furukawa, T. and Cepko, C. L. (2001). Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell, 107, 579–89CrossRefGoogle ScholarPubMed
Brown, N. L., Patel, S., Brzezinski, J. and Glaser, T. (2001). Math5 is required for retinal ganglion cell and optic nerve formation. Development, 128, 2497–508Google ScholarPubMed
Burmeister, M., Novak, J., Liang, M. Y.et al. (1996). Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet., 12, 376–84CrossRefGoogle ScholarPubMed
Cai, L., Morrow, E. M. and Cepko, C. L. (2000). Mis-expression of basic helix-loop-helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. Development, 127, 3021–30Google Scholar
Cayouette, M., Barres, B. A. and Raff, M. (2003). Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron, 40, 897–904CrossRefGoogle ScholarPubMed
Bene, Del F., Tessmar-Raible, K. and Wittbrodt, J. (2004). Direct interaction of geminin and Six3 in eye development. Nature, 427, 745–9CrossRefGoogle ScholarPubMed
Dorsky, R. I., Rapaport, D. H. and Harris, W. A. (1995). Xotch inhibits cell differentiation in the Xenopus retina. Neuron, 14, 487–96CrossRefGoogle ScholarPubMed
Dorsky, R. I., Chang, W. S., Rapaport, D. H. and Harris, W. A. (1997). Regulation of neuronal diversity in the Xenopus retina by Delta signaling. Nature, 385, 67–70CrossRefGoogle Scholar
Dyer, M. A. and Cepko, C. L. (2000a). Control of Müller glial cell proliferation and activation following retinal injury. Nat. Neurosci., 3, 873–80CrossRefGoogle Scholar
Dyer, M. A. and Cepko, C. L. (2000b). p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development, 127, 3593–605Google Scholar
Dyer, M. A. and Cepko, C. L. (2001). p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J. Neurosci., 21, 4259–71CrossRefGoogle ScholarPubMed
Dyer, M. A., Livesey, F. J., Cepko, C. L. and Oliver, G. (2003). Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat. Genet., 34, 53–8CrossRefGoogle ScholarPubMed
Ezzeddine, Z. D., Yang, X., DeChiara, T., Yancopoulos, G. and Cepko, C. L. (1997). Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development, 124, 1055–67Google ScholarPubMed
Farah, M. H., Olson, J. M., Sucic, H. B.et al. (2000). Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development, 127, 693–702Google ScholarPubMed
Fischer, A. J. and Reh, T. A. (2001). Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci., 4, 247–252CrossRefGoogle ScholarPubMed
Fuhrmann, S., Kirsch, M. and Hofmann, H. D. (1995). Ciliary neurotrophic factor promotes chick photoreceptor development in vitro. Development, 121, 2695–706Google ScholarPubMed
Furukawa, T., Morrow, E. M. and Cepko, C. L. (1997). Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell, 91, 531–41CrossRefGoogle ScholarPubMed
Furukawa, T., Mukherjee, S., Bao, Z. Z., Morrow, E. M. and Cepko, C. L. (2000). rax, Hes1, and notch1 promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron, 26, 383–94CrossRefGoogle ScholarPubMed
Green, E. S., Stubbs, J. L. and Levine, E. M. (2003). Genetic rescue of cell number in a mouse model of microphthalmia: interactions between Chx10 and G1-phase cell cycle regulators. Development, 130, 539–52CrossRefGoogle Scholar
Harris, W. A. and Hartenstein, V. (1991). Neuronal determination without cell division in Xenopus embryos. Neuron, 6, 499–515CrossRefGoogle ScholarPubMed
Harris, W. A. and Messersmith, S. L. (1992). Two cellular inductions involved in photoreceptor determination in the Xenopus retina. Neuron, 9, 357–72CrossRefGoogle ScholarPubMed
Hatakeyama, J., Tomita, K., Inoue, T. and Kageyama, R. (2001). Roles of homeobox and bHLH genes in specification of a retinal cell type. Development, 128, 1313–22Google ScholarPubMed
Henrique, D., Hirsinger, E., Adam, J.et al. (1997). Maintenance of neuroepithelial progenitor cells by Delta-Notch signaling in the embryonic chick retina. Curr. Biol., 7, 661–70CrossRefGoogle ScholarPubMed
Holt, C. E., Bertsch, T. W., Ellis, H. M. and Harris, W. A. (1988). Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron, 1, 15–26CrossRefGoogle ScholarPubMed
Huang, S. and Moody, S. A. (1995). Asymmetrical blastomere origin and spatial domains of dopamine and neuropeptide Y amacrine sub-types in Xenopus tadpole retina. J. Comp. Neurol., 360, 442–53CrossRefGoogle Scholar
Huang, S. and Moody, S. A. (1997). Three types of serotonin-containing amacrine cells in tadpole retina have distinct clonal origins. J. Comp. Neurol., 387, 42–523.0.CO;2-N>CrossRefGoogle ScholarPubMed
Hutcheson, D. A. and Vetter, M. L. (2001). The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor. Dev. Biol., 232, 327–38CrossRefGoogle ScholarPubMed
Hutcheson, D. A., Hanson, M. I., Moore, K. B.et al. (2005). bHLH-dependent and -independent modes of Ath5 gene regulation during retinal development. Development, 132, 829–39CrossRefGoogle ScholarPubMed
Hyatt, G. A., Schmitt, E. A., Fadool, J. M. and Dowling, J. E. (1996). Retinoic acid alters photoreceptor development in vivo. Proc. Natl. Acad. Sci. U. S. A., 93, 13 298–303CrossRefGoogle ScholarPubMed
Inoue, T., Hojo, M., Bessho, Y.et al. (2002). Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development, 129, 831–42Google ScholarPubMed
Isshiki, T., Pearson, B., Holbrook, S. and Doe, C. Q. (2001). Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell, 106, 511–21CrossRefGoogle ScholarPubMed
James, J., Das, A. V., Bhattacharya, S.et al. (2003). In vitro generation of early-born neurons from late retinal progenitors. J. Neurosci., 23, 8193–203CrossRefGoogle ScholarPubMed
Jensen, A. M. and Wallace, V. A. (1997). Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development, 124, 363–71Google ScholarPubMed
Jessell, T. M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet., 1, 20–9CrossRefGoogle ScholarPubMed
Kanekar, S., Perron, M., Dorsky, R.et al. (1997). Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron, 19, 981–94CrossRefGoogle Scholar
Kay, J. N., Finger-Baier, K. C., Roeser, T., Staub, W. and Baier, H. (2001). Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog. Neuron, 30, 725–36CrossRefGoogle ScholarPubMed
Kelley, M. W., Turner, J. K. and Reh, T. A. (1995). Ligands of steroid/thyroid receptors induce cone photoreceptors in vertebrate retina. Development, 121, 3777–85Google ScholarPubMed
Kelley, M. W., Williams, R. C., Turner, J. K., Creech-Kraft, J. M., Reh, T. A. (1999). Retinoic acid promotes rod photoreceptor differentiation in rat retina in vivo. NeuroReport, 10, 2389–94CrossRefGoogle ScholarPubMed
Kim, J., Wu, H. H., Lander, A. D.et al. (2005). GDF11 controls the timing of progenitor cell competence in developing retina. Science, 308, 1927–30CrossRefGoogle ScholarPubMed
Vail, M. M., Rapaport, D. H. and Rakic, P. (1991). Cytogenesis in the monkey retina. J. Comp. Neurol., 309, 86–114CrossRefGoogle ScholarPubMed
Li, S., Mo, Z., Yang, X.et al. (2004). Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron, 43, 795–807CrossRefGoogle ScholarPubMed
Lillien, L. (1995). Changes in retinal cell fate induced by over-expression of EGF receptor. Nature, 377, 158–62CrossRefGoogle Scholar
Lillien, L. and Cepko, C. (1992). Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development, 115, 253–66Google ScholarPubMed
Lillien, L. and Wancio, D. (1998). Changes in epidermal growth factor receptor expression and competence to generate glia regulate timing and choice of differentiation in the retina. Mol. Cell. Neurosci., 10, 296–308CrossRefGoogle ScholarPubMed
Liu, W., Mo, Z. and Xiang, M. (2001). The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development. Proc. Natl. Acad. Sci. U. S. A., 98, 1649–54CrossRefGoogle ScholarPubMed
Livesey, F. J. and Cepko, C. L. (2001). Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci., 2, 109–18CrossRefGoogle ScholarPubMed
Livesey, F. J., Young, T. L. and Cepko, C. L. (2004). An analysis of the gene expression program of mammalian neural progenitor cells. Proc. Natl. Acad. Sci. U. S. A., 101, 1374–79CrossRefGoogle ScholarPubMed
Mack, A. F. and Fernald, R. D. (1995). New rods move before differentiating in adult teleost retina. Dev. Biol., 170, 136–41CrossRefGoogle ScholarPubMed
Marquardt, T., Ashery-Padan, R., Andrejewski, N.et al. (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell, 105, 43–55CrossRefGoogle ScholarPubMed
Matter-Sadzinski, L., Matter, J. M., Ong, M. T., Hernandez, J. and Ballivet, M. (2001). Specification of neurotransmitter receptor identity in developing retina: the chick ATH5 promoter integrates the positive and negative effects of several bHLH proteins. Development, 128, 217–31Google ScholarPubMed
Matter-Sadzinski, L., Puzianowska-Kuznicka, M., Hernandez, J., Ballivet, M. and Matter, J. M. (2005). A bHLH transcriptional network regulating the specification of retinal ganglion cells. Development, 132, 3907–21CrossRefGoogle ScholarPubMed
McConnell, S. K. and Kaznowski, C. E. (1991). Cell cycle dependence of laminar determination in developing neocortex. Science, 254, 282–5CrossRefGoogle ScholarPubMed
McFarlane, S., Zuber, M. E. and Holt, C. E. (1998). A role for the fibroblast growth factor receptor in cell fate decisions in the developing vertebrate retina. Development, 125, 3967–75Google ScholarPubMed
Mears, A. J., Kondo, M., Swain, P. K.et al. (2001). Nrl is required for rod photoreceptor development. Nat. Genet., 29, 447–52CrossRefGoogle ScholarPubMed
Mo, Z., Li, S., Yang, X. and Xiang, M. (2004). Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development, 131, 1607–18CrossRefGoogle ScholarPubMed
Moody, S. A., Chow, I. and Huang, S. (2000). Intrinsic bias and lineage restriction in the phenotype determination of dopamine and neuropeptide Y amacrine cells. J. Neurosci., 20, 3244–53CrossRefGoogle ScholarPubMed
Moore, K. B., Schneider, M. L. and Vetter, M. L. (2002). Posttranslational mechanisms control the timing of bHLH function and regulate retinal cell fate. Neuron, 34, 183–95CrossRefGoogle ScholarPubMed
Morrow, E. M., Belliveau, M. J. and Cepko, C. L. (1998). Two phases of rod photoreceptor differentiation during rat retinal development. J. Neurosci., 18, 3738–48CrossRefGoogle ScholarPubMed
Morrow, E. M., Furukawa, T., Lee, J. E. and Cepko, C. L. (1999). NeuroD regulates multiple functions in the developing neural retina in rodent. Development, 126, 23–36Google ScholarPubMed
Negishi, K., Teranishi, T. and Kato, S. (1982). New dopaminergic and indoleamine-accumulating cells in the growth zone of goldfish retinae after neurotoxic destruction. Science, 216, 747–9CrossRefGoogle Scholar
Neophytou, C., Vernallis, A. B., Smith, A. and Raff, M. C. (1997). Müller-cell-derived leukaemia inhibitory factor arrests rod photoreceptor differentiation at a post-mitotic pre-rod stage of development. Development, 124, 2345–54Google Scholar
Nishida, A., Furukawa, A., Koike, C.et al. (2003). Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci., 6, 1255–63CrossRefGoogle ScholarPubMed
Novitch, B. G., Chen, A. I. and Jessell, T. M. (2001). Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron, 31, 773–89CrossRefGoogle ScholarPubMed
Ohnuma, S., Philpott, A., Wang, K., Holt, C. E. and Harris, W. A. (1999). p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell, 99, 499–510CrossRefGoogle ScholarPubMed
Ohnuma, S., Hopper, S., Wang, K. C., Philpott, A. and Harris, W. A. (2002). Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development, 129, 2435–46Google ScholarPubMed
Pearson, B. J. and Doe, C. Q. (2003). Regulation of neuroblast competence in Drosophila. Nature, 425, 624–8CrossRefGoogle ScholarPubMed
Perron, M., Kanekar, S., Vetter, M. L. and Harris, W. A. (1998). The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev. Biol., 199, 185–200CrossRefGoogle ScholarPubMed
Perron, M., Opdecamp, K., Butler, K., Harris, W. A. and Bellefroid, E. J. (1999). X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina. Proc. Natl. Acad. Sci. U. S. A., 96, 14996–5001CrossRefGoogle ScholarPubMed
Poggi, L., Vottari, T., Barsacchi, G., Wittbrodt, J. and Vignali, R. (2004). The homeobox gene Xbh1 cooperates with proneural genes to specify ganglion cell fate within the Xenopus neural retina. Development, 131, 2305–15CrossRefGoogle ScholarPubMed
Poulin, G., Lebel, M., Chamberland, M., Paradis, F. W. and Drouin, J. (2000). Specific protein–protein interaction between basic helix-loop-helix transcription factors and homeoproteins of the Pitx family. Mol. Cell. Biol., 20, 4826–37CrossRefGoogle ScholarPubMed
Rapaport, D. H., Patheal, S. L. and Harris, W. A. (2001). Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina. J. Neurobiol., 49, 129–41CrossRefGoogle Scholar
Reh, T. A. (1987). Cell-specific regulation of neuronal production in the larval frog retina. J. Neurosci., 7, 3317–24CrossRefGoogle ScholarPubMed
Reh, T. A. and Kljavin, I. J. (1989). Age of differentiation determines rat retinal germinal cell phenotype: induction of differentiation by dissociation. J. Neurosci., 9, 4179–89CrossRefGoogle ScholarPubMed
Reh, T. A. and Tully, T. (1986). Regulation of tyrosine hydroxylase-containing amacrine cell number in larval frog retina. Dev. Biol., 114, 463–9CrossRefGoogle ScholarPubMed
Repka, A. M. and Adler, R. (1992). Accurate determination of the time of cell birth using a sequential labeling technique with [3H]-thymidine and bromodeoxyuridine (‘window labelling’). J. Histochem. Cytochem., 40, 947–53CrossRefGoogle Scholar
Reynaud, E. G., Pelpel, K., Guillier, M., Leibovitch, M. P. and Leibovitch, S. A. (1999). p57(Kip2) stabilizes the MyoD protein by inhibiting cyclin E-Cdk2 kinase activity in growing myoblasts. Mol. Cell. Biol., 19, 7621–29CrossRefGoogle ScholarPubMed
Scheer, N., Groth, A., Hans, S. and Campos-Ortega, J. A. (2001). An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development, 128, 1099–107Google ScholarPubMed
Shkumatava, A., Fischer, S., Müller, F., Strahle, U. and Neumann, C. J. (2004). Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina. Development, 131, 3849–58CrossRefGoogle ScholarPubMed
Stenkamp, D. L., Frey, R. A., Mallory, D. E. and Shupe, E. E. (2002). Embryonic retinal gene expression in sonic-you mutant zebrafish. Dev. Dyn., 225, 344–50CrossRefGoogle ScholarPubMed
Tessmar, K., Loosli, F. and Wittbrodt, J. (2002). A screen for co-factors of Six3. Mech. Dev., 117, 103–13CrossRefGoogle ScholarPubMed
Tomita, K., Nakanishi, S., Guillemot, F. and Kageyama, R. (1996). Mash1 promotes neuronal differentiation in the retina. Genes Cells, 1, 765–74CrossRefGoogle ScholarPubMed
Turner, D. L. and Cepko, C. L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature, 328, 131–6CrossRefGoogle ScholarPubMed
Turner, D. L., Snyder, E. Y. and Cepko, C. L. (1990). Lineage-independent determination of cell type in the embryonic mouse retina. Neuron, 4, 833–45CrossRefGoogle ScholarPubMed
Viczian, A. S., Vignali, R., Zuber, M. E., Barsacchi, G. and Harris, W. A. (2003). XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina. Development, 130, 1281–94CrossRefGoogle ScholarPubMed
Voas, M. G. and Rebay, I. (2004). Signal integration during development: insights from the Drosophila eye. Dev. Dyn., 229, 162–75CrossRefGoogle ScholarPubMed
Waid, D. K. and McLoon, S. C. (1995). Immediate differentiation of ganglion cells following mitosis in the developing retina. Neuron, 14, 117–24CrossRefGoogle ScholarPubMed
Waid, D. K. and McLoon, S. C. (1998). Ganglion cells influence the fate of dividing retinal cells in culture. Development, 125, 1059–66Google ScholarPubMed
Wang, J. C. and Harris, W. A. (2005). The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification. Dev. Biol., 285, 101–15CrossRefGoogle ScholarPubMed
Wang, S. W., Kim, B. S., Ding, K.et al. (2001). Requirement for math5 in the development of retinal ganglion cells. Genes Dev., 15, 24–9CrossRefGoogle ScholarPubMed
Watanabe, T. and Raff, M. C. (1990). Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron, 4, 461–7CrossRefGoogle ScholarPubMed
Watanabe, T. and Raff, M. C. (1992). Diffusible rod-promoting signals in the developing rat retina. Development, 114, 899–906Google ScholarPubMed
Wetts, R. and Fraser, S. E. (1988). Multipotent precursors can give rise to all major cell types of the frog retina. Science, 239, 1142–45CrossRefGoogle ScholarPubMed
Young, R. W. (1985). Cell differentiation in the retina of the mouse. Anat. Rec., 212, 199–205CrossRefGoogle ScholarPubMed
Young, T. L. and Cepko, C. L. (2004). A role for ligand-gated ion channels in rod photoreceptor development. Neuron, 41, 867–79CrossRefGoogle ScholarPubMed
Zhang, J., Gray, J., Wu, L.et al. (2004). Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat. Genet., 36, 351–60CrossRefGoogle ScholarPubMed
Zhang, X. M. and Yang, X. J. (2001). Regulation of retinal ganglion cell production by Sonic hedgehog. Development, 128, 943–57Google ScholarPubMed
Zhou, Q., Choi, G. and Anderson, D. J. (2001). The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron, 31, 791–807CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cell determination
    • By Michalis Agathocleous, Department of Anatomy and Physiology, University of Cambridge, Downing Street, Cambridge CB2 3DY UK, William A. Harris, Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cell determination
    • By Michalis Agathocleous, Department of Anatomy and Physiology, University of Cambridge, Downing Street, Cambridge CB2 3DY UK, William A. Harris, Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cell determination
    • By Michalis Agathocleous, Department of Anatomy and Physiology, University of Cambridge, Downing Street, Cambridge CB2 3DY UK, William A. Harris, Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.007
Available formats
×