Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-25T16:17:41.474Z Has data issue: false hasContentIssue false

13 - Primary production and its interactions with nutrients and light transmission

Published online by Cambridge University Press:  06 August 2010

Stephen R. Carpenter
Affiliation:
University of Wisconsin, Madison
James F. Kitchell
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Introduction

The trophic cascade from fish to ecosystem processes is the central theme of this book. Previous chapters have documented the changes in piscivore, planktivore and herbivore trophic levels in our experimental lakes. Effects of changes in herbivory on phytoplankton communities have been discussed (Chapter 11) and we have compared the distinctive habitats for algae provided by the epilimnion and metalimnion (Chapter 12). This chapter turns to the central ecosystem variates of our study: biomass and metabolism of primary producers.

In lakes, dynamics of herbivores, primary producers nutrients, and light have strong feedbacks. Excretion by herbivores is a major source of nutrients for phytoplankton. Limnetic grazers affect their prey negatively, through grazing, and positively, through nutrient recycling. The phytoplankton also respond to inputs of nutrients from outside the lake, and to mixing of nutrients upward from the hypolimnion. Light drives photosynthesis, and phytoplankton attenuate light as it passes down-ward through the water column. In lakes where substantial aggregations of algae exist in deep, low-light habitats, feedbacks between algal biomass and light extinction may strongly influence primary production (Chapter 12).

These strong feedbacks imply that primary production cannot be addressed without considering physical–chemical factors such as mixing depth, irradiance, and nutrient limitation. This chapter focuses on dynamics of algal biomass (measured as chlorophyll) and production, in the context of selected physical and chemical characteristics of the water column. These include indicators of nutrient deficiency, light penetration, and mixing depth.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×