Skip to main content
Log in

Estimation of boundary-layer flow of a nanofluid past a stretching sheet: A revised model

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The previous model for the boundary layer nanofluid flow past a stretching surface with a specified nanoparticle volume fraction on the surface is revisited. The major limitation of the previous model is the active control of the nanoparticle volume fraction on the surface. In a revised model proposed in this paper, the nanoparticle volume fraction on the surface is passively controlled, which accounts for the effects of both the Brownian motion and the thermophoresis under the boundary condition, whereas the Buongiorno’s model considers both effects in the governing equations. The assumption of zero nanoparticle flux on the surface makes the model physically more realistic. In the revised model, the dimensionless heat transfer rates are found to be higher whereas the dimensionless mass transfer rates are identically zero due to the passive boundary condition. It is also found that the Brownian motion parameter has a negligible effect on the Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BUONGIORNO J. Convective transport in nanofluids[J]. Journal of Heat Transfer, 2006, 128(3): 240–250.

    Article  Google Scholar 

  2. KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences, 2010, 49(2): 243–247.

    Article  Google Scholar 

  3. NIELD D. A., KUZNETSOV A. V. The ChengMinkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid[J]. International Journal of Heat and Mass Transfer, 2009, 52(25–26): 5792–5795.

    Article  Google Scholar 

  4. KHAN W. A., POP I. Boundary-layer flow of a nanofluid past a stretching sheet[J]. International Journal of Heat and Mass Transfer, 2010, 53(11): 2477–2483.

    Article  Google Scholar 

  5. KUZNETSOV A. V., NIELD D. A. The ChengMinkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model[J]. International Journal of Heat and Mass Transfer, 2013, 65(25–26): 682–685.

    Article  Google Scholar 

  6. KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model[J]. International Journal of Thermal Sciences, 2014, 77: 126–129.

    Article  Google Scholar 

  7. KHAN Z. H., KHAN W. A. and POP I. Triple diffusive free convection along a horizontal plate in porous media saturated by a nanofluid with convective boundary condition[J]. International Journal of Heat and Mass Transfer, 2013, 66(1): 603–612.

    Article  Google Scholar 

  8. WANG C. Y. Free convection on a vertical stretching surface[J]. Zamm-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1989, 69(11): 418–420.

    Article  Google Scholar 

  9. PAL D., MANDAL G. Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a nonlinear vertical stretching/shrinking sheet with viscous—Ohmic dissipation[J]. Powder Technology, 2015, 279: 61–74.

    Article  Google Scholar 

  10. DAS K. Nanofluid flow over a non-linear permeable stretching sheet with partial slip[J] Journal of the Egyptian Mathematical Society, 2015, 23(2): 451–456.

    Article  MathSciNet  Google Scholar 

  11. SANDEEP N., RUSHI KUMAR B. and JAGADEESH KUMAR M. S. A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet[J]. Journal of Molecular Liquids, 2015, 212(1): 585–591.

    Article  Google Scholar 

  12. CHANDRASEKAR M., KASIVISWANATHAN M. S. Analysis of heat and mass transfer on MHD Flow of a nanofluid past a stretching sheet[J]. Procedia Engineering, 2015, 127: 493–500.

    Article  Google Scholar 

  13. GANGA B., SARANYA S. and VISHNU GANESH N. et al. Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet[J]. Journal of Hydrodynamics, 2015, 27(6): 945–954.

    Article  Google Scholar 

  14. KHAN W. A., MAKINDE O. D. and KHAN Z. H. Nonaligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat[J]. International Journal of Heat and Mass Transfer, 2016, 96: 525–534.

    Article  Google Scholar 

  15. MAKINDE O. D., MABOOD F. and KHAN W. A. et al. MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat[J]. Journal of Molecular Liquids, 2016, 219: 624–630.

    Article  Google Scholar 

  16. AHMAD A. Flow of Reiner Philipp off based nanofluid past a stretching sheet[J]. Journal of Molecular Liquids, 2016, 219: 643–646.

    Article  Google Scholar 

  17. MABOOD F., KHAN W. A. Analytical study for unsteady nanofluid MHD Flow impinging on heated stretching sheet[J]. Journal of Molecular Liquids, 2016, 219: 216–223.

    Article  Google Scholar 

  18. KANDASAMY R., LOGANATHAN P. and PUVI ARASU P. Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection[J]. Nuclear Engineering and Design, 2011, 241(6): 2053–2059.

    Article  Google Scholar 

  19. BEJAN A. Convection heat transfer[M]. 3rd Edition. New York, USA: John Wiley, 2004.

    MATH  Google Scholar 

  20. DAUBERT T. E., DANNER R. P. Physical and thermodynamic properties of pure chemicals[M]. New York, USA: Hemisphere Publishing Corporation, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar Hayat Khan.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 11271023).

Biography: Naeema ISHFAQ (1986-), Female, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishfaq, N., Khan, Z.H., Khan, W.A. et al. Estimation of boundary-layer flow of a nanofluid past a stretching sheet: A revised model. J Hydrodyn 28, 596–602 (2016). https://doi.org/10.1016/S1001-6058(16)60663-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60663-7

Key words

Navigation