Experimental Studies
Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging

https://doi.org/10.1016/S0735-1097(99)00068-6Get rights and content
Under an Elsevier user license
open archive

Abstract

OBJECTIVES

The purpose of this study was to determine the spatial distribution of myocardial function (myofiber shortening and work) within the left ventricular (LV) wall during ventricular pacing.

BACKGROUND

Asynchronous electrical activation, as induced by ventricular pacing, causes various abnormalities in LV function, perfusion and structure. These derangements may be caused by abnormalities in regional contraction patterns. However, insight into these patterns during pacing is as yet limited.

METHODS

In seven anesthetized dogs, high spatial and temporal resolution magnetic resonance–tagged images were acquired in three orthogonal planes. Three-dimensional deformation data and LV cavity pressure and volume were used to determine midwall circumferential strain and external and total mechanical work at 192 sites around the left ventricle.

RESULTS

During ventricular pacing, systolic fiber strain and external work were approximately zero in regions near the pacing site, and gradually increased to more than twice the normal value in the most remote regions. Total mechanical work, normalized to the value during right atrial pacing, was 38 ± 13% (right ventricular apex [RVapex] pacing) and 61 ± 23% (left ventricular base [LVbase] pacing) close to the pacing site, and 125 ± 48% and 171 ± 60% in remote regions, respectively (p < 0.05 between RVapex and LVbase pacing). The number of regions with reduced work was significantly larger during RVapex than during LVbase pacing. This was associated with a reduction of global LV pump function during RVapex pacing.

CONCLUSIONS

Ventricular pacing causes a threefold difference in myofiber work within the LV wall. This difference appears large enough to regard local myocardial function as an important determinant for abnormalities in perfusion, metabolism, structure and pump function during asynchronous electrical activation. Pacing at sites that cause more synchronous activation may limit the occurrence of such derangements.

Abbreviations

ANOVA
analysis of variance
LBBB
left bundle branch block
LV
left ventricular, left ventricle
LVbase
left ventricular base
MRI
magnetic resonance imaging
PVA
pressure-volume area
RA
right atrium, right atrial
RF
radiofrequency
RV
right ventricular, right ventricle
RVapex
right ventricular apex
3D
three dimensional
SD
significant difference

Cited by (0)

This work was supported by National Institutes of Health Grant HL-45683 and a grant from the Bakken Research Center, Maastricht, The Netherlands. E.R. McVeigh is an Established Investigator of the American Heart Association.