Elsevier

Talanta Open

Volume 5, August 2022, 100087
Talanta Open

Nano-molecularly imprinted polymers for serum creatinine sensing using the heat transfer method

https://doi.org/10.1016/j.talo.2022.100087Get rights and content
Under a Creative Commons license
open access

Abstract

Serum creatinine concentration is an important clinical measure of kidney function. However, standard methods of detection, such as the Jaffe method or enzymatic assays, suffer several disadvantages, including non-specificity and procedural complexity, or high cost, respectively. In this work, we propose the use of nano-molecularly imprinted polymers (nMIPs) in conjunction with the novel Heat Transfer Method (HTM) as a promising alternative sensing platform to these existing methods for measuring serum creatinine concentration. More specifically, it is shown that creatinine-imprinted nMIPs can be produced using a solid-phase templating method, and that simple drop-casting onto a cheap, disposable substrate can be used in conjunction with HTM to detect creatinine with a limit-of-detection of (7.0 ± 0.5) μM in buffer solutions. Furthermore, the nMIPs are shown to selectively bind creatinine in comparison to several similar molecules, and the sensing platform is demonstrated to be able to detect changes in creatinine concentration in complex blood plasma samples.

Keywords

Serum creatinine sensing
Solid-phase templating
Nano-molecularly imprinted polymer
Heat transfer method

Cited by (0)