Change of evaporation rate of single monocomponent droplet with temperature using time-resolved phase rainbow refractometry

https://doi.org/10.1016/j.proci.2018.09.026Get rights and content
Under a Creative Commons license
open access

Abstract

Droplet evaporation characterization, although of great significance, is still challenging. The recently developed phase rainbow refractometry (PRR) is proposed as an approach to measuring the droplet temperature, size as well as evaporation rate simultaneously, and is applied to a single flowing n-heptane droplet produced by a droplet-on-demand generator. The changes of droplet temperature and evaporation rate after a transient spark heating are reflected in the time-resolved PRR image. Results show that droplet evaporation rate increases with temperature, from −1.28×108 m2/s at atmospheric 293 K to a range of (−1.5, −8)×108 m2/s when heated to (294, 315) K, agreeing well with the Maxwell and Stefan–Fuchs model predictions. Uncertainty analysis suggests that the main source is the indeterminate gradient inside droplet, resulting in an underestimation of droplet temperature and evaporation rate. With the demonstration on simultaneous measurements of droplet refractive index as well as droplet transient and local evaporation rate in this work, PRR is a promising tool to investigate single droplet evaporation in real engine conditions.

Keywords

Phase rainbow refractometry
Droplet
Size change
Temperature
Evaporation rate

Cited by (0)