Technical Note
Comparison of compressed sensing and controlled aliasing in parallel imaging acceleration for 3D magnetic resonance imaging for radiotherapy preparation

https://doi.org/10.1016/j.phro.2022.06.008Get rights and content
Under a Creative Commons license
open access

Abstract

Magnetic resonance imaging (MRI) for radiotherapy is often based on 3D acquisitions, but suffers from low signal-to-noise ratio due to immobilization device and flexible coil use. The aim of this study was to investigate if Compressed Sensing (CS) improves image quality for 3D Turbo Spin Echo acquisitions compared with Controlled Aliasing k-space-based parallel imaging in equivalent acquisition time for intracranial T1, T2-Fluid-Attenuated Inversion Recovery (FLAIR) and pelvic T2 imaging. Qualitative ratings suffered from large inter-rater variability. CS-T1 brain MRI was superior numerically and qualitatively. CS-T2-FLAIR brain MRI was numerically superior, but rater equivalent. CS-T2 pelvic MRI was equivalent without gain.

Keywords

Magnetic resonance imaging
Signal-to-noise ratio
Compressed sensing
Radiotherapy
CAIPIRINHA
3D SPACE

Cited by (0)