Elsevier

NeuroImage

Volume 159, 1 October 2017, Pages 57-69
NeuroImage

Investigations into within- and between-subject resting-state amplitude variations

https://doi.org/10.1016/j.neuroimage.2017.07.014Get rights and content
Under a Creative Commons license
open access

Highlights

  • We investigate variability in resting state amplitude between- and within-subjects.

  • Clustering results reveal a distinction between cognitive and primary sensory/motor networks.

  • Amplitudes in primary sensory/motor networks increase within subject towards the end of a scan.

  • These increases in amplitude drive changes in apparent functional connectivity.

  • Findings reveal complex relationships between amplitude and head motion.

Abstract

The amplitudes of spontaneous fluctuations in brain activity may be a significant source of within-subject and between-subject variability, and this variability is likely to be carried through into functional connectivity (FC) estimates (whether directly or indirectly). Therefore, improving our understanding of amplitude fluctuations over the course of a resting state scan and variation in amplitude across individuals is of great relevance to the interpretation of FC findings. We investigate resting state amplitudes in two large-scale studies (HCP and UK Biobank), with the aim of determining between-subject and within-subject variability. Between-subject clustering distinguished between two groups of brain networks whose amplitude variation across subjects were highly correlated with each other, revealing a clear distinction between primary sensory and motor regions (‘primary sensory/motor cluster’) and cognitive networks. Within subjects, all networks in the primary sensory/motor cluster showed a consistent increase in amplitudes from the start to the end of the scan. In addition to the strong increases in primary sensory/motor amplitude, a large number of changes in FC were found when comparing the two scans acquired on the same day (HCP data). Additive signal change analysis confirmed that all of the observed FC changes could be fully explained by changes in amplitude. Between-subject correlations in UK Biobank data showed a negative correlation between primary sensory/motor amplitude and average sleep duration, suggesting a role of arousal. Our findings additionally reveal complex relationships between amplitude and head motion. These results suggest that network amplitude is a source of significant variability both across subjects, and within subjects on a within-session timescale. Future rfMRI studies may benefit from obtaining arousal-related (self report) measures, and may wish to consider the influence of amplitude changes on measures of (dynamic) functional connectivity.

Keywords

Amplitude
Functional connectivity
Variability
Resting state

Cited by (0)