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Abstract
The problem of causal discovery is especially challenging when the variables of interest cannot be directly measured. In measurement models, the measured variables were generated by latent causal variables that are causally related to each other, and by estimating the measurement model from measured data, one is able to recover the latent variables and their causal relations. In this paper, we provide precise sufficient identifiability conditions for the linear pure measurement model, and show what information of the causal structure can be recovered from observed data without prior knowledge of data distributions. In particular, we first show that, based on second-order statistics, although the pure measurement model is in general not fully identifiable under the assumption of two pure measurement variables, we can identify the set of all candidate measurement models. We then further prove that the pure measurement model can be identified uniquely based on higher-order statistics. Next, to address more general situations, we offer the identifiability conditions of linear measurement models with arbitrary noise distributions. We finally develop a unified method to learn pure measurement models from data. Experimental results on both synthetic and real-world data demonstrate the usefulness of our theory and the effectiveness of our approach.





Introduction
Learning the causal relationships from observational (non-experimental) data, known as causal discovery, has become an important research topic and played a key role in a wide range of tasks of understanding the system mechanisms, such as explaining a phenomenon, predicting, and decision making [1], [2], [3], [4], [5], [6], [7], [8]. Many methods for causal discovery have been proposed to learn the causal relationships among observed variables [9], [10], [11], [12], [13], [14], [15], [16]. Although these methods have been used in a wide range of fields, they usually assume that the causal sufficiency assumption is met, i.e., there are no latent confounders in the system. However, in practice, this assumption is basically untestable, and often violated.
There exist several methods for causal discovery in the cases with latent confounders[17], [18], [19], [20], [21], [22], [23]. These works focused on estimating the causal relationships among observed variables rather than latent variables. However, in some applications of real-life systems, researchers are interested in inferring causal relationships between latent variables that cannot be directly measured [24], [25]. For instance, social scientists attempt to learn the causal relations between job challenge, job satisfaction and spousal support, which are unmeasured variables and have to be operationalized as the responses to questionnaire items (see Fig. 1(a), or see Fig. 10.1 in Spirtes et al., [2]).
The linear latent variable models are ubiquitous in social science, economics, and psychology, etc [24], [2]. The commonly used framework for learning the causal structure of latent variables consists of two steps: (1) finding a pure measurement model involving the causal relations between measured variables 1 and their corresponding latent variables (see Fig. 1(b)) 2; (2) learning the structure of the latent variables based on the pure measurement model (see Fig. 1(c)) [2]. It is noteworthy that learning the correct pure measurement model is a prerequisite step in learning the latent causal structure. Once given an incorrect pure measurement model, the existing algorithms, such as MIMbuild algorithm [26], more reliable Copula Factor PC algorithm [27], noise Independent Component Analysis-based method for non-Gaussian data [28], or LLCS-AD algorithm for arbitrary noise distribution data [29], may fail to learn the causal relationships between latent variables. Therefore, it is important to correctly learn pure measurement models.
The main approaches for learning pure measurement models roughly fall into the following two categories. One category is to use the second-order statistics (the second-order moments in statistics), such as BuildPureClusters (BPC) algorithm [26] and FindOneFactorClusters (FOFC) algorithm [30]. These methods can learn a correct pure measurement model under the assumption that each latent variable in the system has at least three pure measurement variables as children. Another category is to use the high-order statistics (beyond the second-order moments in statistics, e.g., skewness, kurtosis, etc.), such as the Triad Constraints-based LSTC algorithm [31] and Generalized Independent Noise (GIN) algorithm [32]. Compared with those methods in the first category, methods in the latter category can learn a correct pure measurement model under a milder assumption that each latent variable in the system has at least two pure measurement variables as children. However, they need two additional assumptions, i.e., the noise terms of variables in the system are non-Gaussian (non-Gaussianity Assumption), and there is no direct edge between measured variables (Purity Assumption).
Based on the above analysis, one can see that all approaches so far presented have either been overly restricted in the number of pure measurement variables for each latent variable (at least three) or have required distributional assumption (non-Gaussian). In this paper, we integrate the merits of two categories for generalization, to yield a method being able to learn the linear pure measurement model in cases where previous methods may give incorrect or uninformative answers. In particular, we make the following contributions:
	1.We firstly extend the identifiability result of second-order statistics-based methods and show that although the pure measurement model is not fully identifiable based on the second-order statistics under assumption of two pure measurement variables, we are able to identify the set of all candidate measurement models.

	2.We then generalize the identifiability result of high-order statistics-based methods and show that the pure measurement model can be identified uniquely under the assumption of non-Gaussianity and two pure measurement variables (without Purity Assumption).

	3.We further investigate the strengths of the above new results, rendering the identifiability conditions as informative as possible (without the prior knowledge of noise distributions).

	4.We provide a unified algorithm to learn the pure measurement model without prior knowledge of noise term distributions.





Section snippets
Notation and Graph Terminology
Denote by G(V) a Directed Acyclic Graph (DAG) with a set of variables V=X∪L, where X denotes the set of measured (observed) variables and L denotes the set of latent (unmeasured, or hidden) variables. The set of Vi’s parents is denoted by Pa(Vi). A node Vi is a collider on the path if (1) Vi has two neighbors in the path, and (2) Vi has arrows directed to it from both these neighbors. A trek between Vi and Vj is a path that does not contain any colliders in G(V). Moreover, a choke point Vc
Identifiability with Second-Order Statistics
We here exploit the second-order statistics to identify the pure measurement model. To identify the pure measurement model means to identify all pure causal clusters and determine how many latent variables are there in G(V). We thus aim to answer the following questions:
	P1. How to identify causal clusters from measurement variables?

	P2. Which clusters are pure and which clusters share the common latent parent?


We provide answers to these problems in Proposition 1, Proposition 2, respectively,Identifiability with High-Order Statistics
We study the identification of a pure measurement model with higher-order statistics. We first show the key assumption, and quote the definition of GIN condition and its graphical criteria [32], which exploit the non-Gaussianity from data.
Assumption 2
[Non-Gaussianity Assumption] All noise terms of variables V are non-Gaussian.
Definition 8 GIN Condition
Let Y and Z be two observed random vectors in G(V). Suppose Assumption 2 holds. We say that (Z,Y) follows the GIN condition if and only if ω⊺Y is independent of Z, where ω satisfies ω⊺
Identifiability with Arbitrary Noise Distributions
In this section, we show how to unify the merits of the above theorems to yield sufficient identifiability conditions for the pure measurement model with the arbitrary noise distributions. To obtain robustness with respect to the second-order statistics but not forgo the possibility of identifying the full pure measurement model in favourable circumstances (high-order statistics), we adopt the following two processes:
	1.We first identify the set of candidate clusters by using the second-order


A Practical Algorithm for Learning Pure Measurement Models
We leverage the above theoretical results and propose a unified algorithm to Learn the Pure Measurement Model (abbreviated as LPMM) in Algorithm 1. LPMM first learns all causal clusters S according to Proposition 1 (Step 1). It then finds the pure clusters P and some candidate pure clusters PP (if such exist) according to Proposition 2, Proposition 5 (Step 2). Finally, it lists all candidate pure measurement models.
	Algorithm 1: Framework of the LPMM Algorithm
	Input:Set of random variables X, and 



Experiments
In this section, we applied our proposed approach to both synthetic and real-world data to verify the theoretical results with arbitrary noise distributions. Our source code is available in Supplementary Materials.
Conclusion and Further Research
We considered the problem of estimating the pure measurement model in a linear latent variable model. We first investigated its identifiability conditions, with no prior knowledge of the noise distributions. We showed that although the pure measurement model is not fully identifiable under the assumption of two pure measurement variables, one can identify the set of candidates of pure measurement models. Furthermore, we developed a two-step unified algorithm to learn the pure measurement model. 
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