Elsevier

Mendeleev Communications

Volume 24, Issue 1, January–February 2014, Pages 1-8
Mendeleev Communications

Hydrogen storage materials

https://doi.org/10.1016/j.mencom.2013.12.001Get rights and content

Hydrogen storage materials including metal hydrides, carbon nanotubes, metal organic frameworks, and organic systems based on reversible hydrogenation–dehydrogenation cycles are compared in terms of the hydrogen storage capacity and the temperature required for storage and release of hydrogen.

References (83)

  • J. Graetz et al.

    J. Alloys Compd.

    (2011)
  • W. Zhao et al.

    Int. J. Hydrogen Energy

    (2011)
  • P. Benard et al.

    Int. J. Hydrogen Energy

    (2001)
  • B.K. Gupta et al.

    Int. J. Hydrogen Energy

    (2001)
  • E.A. Tveritinova et al.

    Mendeleev Commun.

    (2013)
  • B.J. Kim et al.

    Int. J. Hydrogen Energy

    (2011)
  • A. Lueking et al.

    J. Catal.

    (2002)
  • V.Ya. Davydov et al.

    J. Catal.

    (2002)
  • A.V. Talyzin et al.

    J. Alloys Compd.

    (2005)
  • L.E. Klebanoff et al.

    Int. J. Hydrogen Energy

    (2013)
  • D.V. Schur et al.

    Int. J. Hydrogen Energy

    (2002)
  • F.H. Yang et al.

    Carbon

    (2002)
  • S.S. Mao et al.

    Prog. Nat

    Sci.: Mater. Int.

    (2012)
  • H. Chi et al.

    Int. J. Hydrogen Energy

    (2004)
  • G. Maria et al.

    Chem. Eng. Sci

    (1996)
  • S. Nakagawa et al.

    Stud. Surf. Sci. Catal.

    (1996)
  • J. Chen et al.

    Shiyou Daxue Xuebao

    Ziran Kexueban

    (1998)
  • S. Hodoshima et al.

    Int. J. Hydrogen Energy

    (2003)
  • S. Hodoshima et al.

    Int. J. Hydrogen Energy

    (2003)
  • C. Shinohara et al.

    Appl. Catal. A

    (2004)
  • P. Jena

    J. Phys. Chem. Lett.

    (2011)
  • K. Shashikala, in Functional Materials: Preparation, Processing and Applications, eds. S. Banerjee and A. K. Tyagi,...
  • M. Hirscher et al.

    Appl. Phys.

    (2001)
  • K. K. Tae, K.I. Sung and K. C. Young, Jpn. Patent 0527080 A, 1993.(Chem. Abstr., 1994, 91,...
  • N.L. Rosi et al.

    Science

    (2003)
  • H. Li et al.

    Nature

    (1999)
  • O. M. Yaghi, Abstracts of Papers, Proc. 228th ACS National Meeting, Philadelphia, USA, 2004,...
  • G. Ferey et al.

    Chem. Commun.

    (2003)
  • H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim and O....
  • E. Tylianakis et al.

    Nanoscale

    (2011)
  • S. Aguado et al.

    New J. Chem.

    (2011)
  • S. R. Batten and R. Robsom, Angew. Chem. Int. Ed., 1998, 37,...
  • A. J. Lachawiec, G. S. Qi and R. T. Yang, Langmuir, 2005, 21,...
  • Y. Li and R. T. Yang, J. Am. Chem. Soc., 2006, 128,...
  • L.J. Murray et al.

    Chem. Soc. Rev.

    (2009)
  • J.L.C. Rowsell et al.

    J. Am. Chem. Soc.

    (2006)
  • M. Dinca et al.

    J. Am. Chem. Soc.

    (2007)
  • H. Furukawa et al.

    J. Mater. Chem.

    (2007)
  • S. Barman et al.

    Chem. Commun.

    (2010)
  • L. Pan et al.

    J. Am. Chem. Soc.

    (2004)
  • B. Bogdanovich, US Patent 5,199,972 A, 1993.(Chem. Abstr., 1994, 101,...
  • Cited by (27)

    • Microwave enhanced hydrogen production from liquid organic hydrogen carriers: A review

      2023, Chemical Engineering and Processing - Process Intensification
    • Hydrogen storage technology

      2023, Towards Hydrogen Infrastructure: Advances and Challenges in Preparing for the Hydrogen Economy
    • Absorption based solid state hydrogen storage system: A review

      2022, Sustainable Energy Technologies and Assessments
      Citation Excerpt :

      Recently, Yartys et al. [31] presented a detailed review on magnesium based materials for hydrogen and energy storage and reported different applications of such alloys. Several other reviews focusing on hydrogen storage materials [32–34], solid state storage and its engineering aspects [35], overview of different methods and materials used for solid state hydrogen storage [36] and role of nanostructured metal hydride for hydrogen storage [37] were reported in the literature. Gangu et al. [38] and Schoedel et al. [39] reviewed the possibilities and benefits of using Metal Organic Framework (MOF), Multi-Wall Carbon Nanotubes (MWCNT) and graphene as hydrogen storage materials.

    • Dehydrogenation of polycyclic naphthenes on a Pt/C catalyst for hydrogen storage in liquid organic hydrogen carriers

      2018, Fuel Processing Technology
      Citation Excerpt :

      Also, cracking or ring opening may occur at temperatures typical for dehydrogenation. Therefore, these two systems are not considered as perspective candidates, in spite of the significant number of publications related to these systems [7]. It was shown [8–10] that the possibility of the loss of the substrate with releasing hydrogen can be decreased when the LOHC represent π-conjugated aromatic compounds such as polyaromatic compounds (7.2–7.8 wt%) or heterocyclic compounds (5.5–5.7 wt% Н2).

    View all citing articles on Scopus
    View full text